UNIVERSITE DE GENEVE

DEEPLEARNING
Project 2
Teacher:
Student:)
. Pr. Francois FLEURET
Fardin HOSSAIN))
Teaching Assistants:
Salma ENNAJ . .
. : Balint MATE
Yacine M’RAD
Atul SINHA

December 18, 2022

Contents
1 Introduction

2 Program Architecture

2.1 Implemented modules.
2.1.1 Module Linear
2.1.2 Module Tanh
2.1.3 Module Sigmoid
2.1.4 Module ReLU o
2.2 Main Module
2.3 Sequential
3 Results

4 Conclusion

Page 1 sur 4

1 Introduction

The goal of this project is to implement a complete set of tools from scratch and
perform a gradient descent in order to classify data on a small set of test data.
The generated data consists of points of class 1 or 0 separated by a circle centered
in 0.5,0.5 and radius 1/4/2- 7. The class is 0 for points outside and 1 otherwise.
This project is heavily inspired from Practical Work n3 where we had to manually
implement a single fully connected layer. The difference here is that the code has
been made more modular allowing to change the activation functions, or add layers
my simply manipulating "boxes".

2 Program Architecture

2.1 Implemented modules
The different modules needed in order to perform are relatively small, and consists
of a Linear layer, ReLU and TanH.

Each of the different modules had the following methods implemented, no matter
if it was needed for something or not.

class MODULE_NAMEQ):
def __init__(self) —> None: """when module is created"""
def __call__(self, x: torch.Tensor) —> torch.Tensor: """forward pass"""
def backward(self, dl_ds: torch.Tensor) —> torch.Tensor: """backward pass"""
def param(self) —> List: """get the parameters"""
def zero_grad(self) —> None: """re—initialize gradients"""

def update(self, *args): """update parameters from gradient"""

2.1.1 Module Linear

This module allows to compute the forward and backward pass over a single example.

The forward pass computes the output s®) from the input 2~ with the equation.
sW = O z=1 4 O

The backward pass computes the derivative of weights and bias from the output
with:

ol ol ol ol ol ol
== (I=INT = = =D
[811)(’)] - [85(”]@ S L%(l)] - l@s(l)] and [85(”1)] - [85(1)] v
2.1.2 Module Tanh

exp(zW)) — exp(—z®)

The forward pass is implemented with the following: s = exp(@®) T exp(—z0)

Page 2 sur 4

ol ol
And the backward pass: las(l“)] = (1 — tanh(s)?) - l@s(l)]

2.1.3 Module Sigmoid

1

The forward pass is implemented with the following: s =
1+ exp(—zW)

ol , . . . ol
And the backward pass: [83(”1)] = sigmoid(s) - (1 — sigmoid(s)) - [85(’)]
2.1.4 Module ReLU
0 if =<0
The forward pass is implemented with the following: s { 0 otherwise

ol ol
P I B B ; 1) ;
And the backward pass is: [R 1)] [s (z)] if 2% >0 0 otherwise

2.2 Main Module

2.3 Sequential

The sequential method allows to set all the network’s layers, and store them in a list:

model .Sequential (Linear(2,25), ReLU(),Linear(25,25),ReLU(),Linear(25,1),Tanh()) means
that the figure 1 is created.

Then each module can be called in the class in the following way:

for cur_module in self.operations_1:
x = cur_module(x) #forward pass
for cur_module in self.operations_1[::—1]:

X = cur_module.backward(x) #backward pass

X1
—_ yl

)

Figure 1: Created layer by sequential with two hidden layers and 25 units

Page 3 sur 4

3 Results

Figures 2 and 3 show that the error rate and loss decrease as we want and the figure
4 shows that target class is correctly predicted after 10 training epochs.

016

validation set validation set

—— training set 250 —— training set
014

=

=

™)
[~
=]
=

error-rate
=1
i
=
loss

=
=1
@

=
=1
5

004 50

0 2 3 5 B 0 2 3 5 B
epochs epochs

Figure 2: Error-rate through the epochs Figure 3: Loss through epochs

test-set predicted test-set target
124 12

10 4

0.8 4

06 4

0.4 4

02 4

000 025 050 075 100 000 025 050 075 100

Figure 4: Visual verification of Predicted vs Target class

4 Conclusion

This working project allowed us to learn how PyTorch works and implement a
framework on our own. This allowed to deepen our understanding of the Deep-
Learning course.

Page 4 sur 4

