
Université de Genève

DeepLearning

Project 2

Student:
Fardin Hossain
Salma Ennaj
Yacine M’Rad

Teacher:
Pr. François Fleuret
Teaching Assistants:
Bálint Máté
Atul Sinha

December 18, 2022

Contents
1 Introduction 2

2 Program Architecture 2
2.1 Implemented modules . 2

2.1.1 Module Linear . 2
2.1.2 Module Tanh . 2
2.1.3 Module Sigmoid . 3
2.1.4 Module ReLU . 3

2.2 Main Module . 3
2.3 Sequential . 3

3 Results 4

4 Conclusion 4

Page 1 sur 4

1 Introduction

The goal of this project is to implement a complete set of tools from scratch and
perform a gradient descent in order to classify data on a small set of test data.
The generated data consists of points of class 1 or 0 separated by a circle centered
in 0.5,0.5 and radius 1/

√
2 · π. The class is 0 for points outside and 1 otherwise.

This project is heavily inspired from Practical Work n3 where we had to manually
implement a single fully connected layer. The difference here is that the code has
been made more modular allowing to change the activation functions, or add layers
my simply manipulating "boxes".

2 Program Architecture

2.1 Implemented modules

The different modules needed in order to perform are relatively small, and consists
of a Linear layer, ReLU and TanH.

Each of the different modules had the following methods implemented, no matter
if it was needed for something or not.

1 class MODULE_NAME():

2 def __init__(self) −> None: """when module is created"""
3 def __call__(self, x: torch.Tensor) −> torch.Tensor: """forward pass"""

4 def backward(self, dl_ds: torch.Tensor) −> torch.Tensor: """backward pass"""
5 def param(self) −> List: """get the parameters"""

6 def zero_grad(self) −> None: """re−initialize gradients"""
7 def update(self, ∗args): """update parameters from gradient"""

2.1.1 Module Linear

This module allows to compute the forward and backward pass over a single example.
The forward pass computes the output s(l) from the input x(l−1) with the equation.

s(l) = w(l)x(l−1) + b(l)

The backward pass computes the derivative of weights and bias from the output
with:[

∂l

∂w(l)

]
=

[
∂l

∂s(l)

]
(x(l−1))T ,

[
∂l

∂b(l)

]
=

[
∂l

∂s(l)

]
and

[
∂l

∂s(l+1)

]
=

[
∂l

∂s(l)

]
·w(l)

2.1.2 Module Tanh

The forward pass is implemented with the following: s(l) = exp(x(l)) − exp(−x(l))
exp(x(l)) + exp(−x(l))

Page 2 sur 4

And the backward pass:
[

∂l

∂s(l+1)

]
= (1 − tanh(s)2) ·

[
∂l

∂s(l)

]

2.1.3 Module Sigmoid

The forward pass is implemented with the following: s(l) = 1
1 + exp(−x(l))

And the backward pass:
[

∂l

∂s(l+1)

]
= sigmoid(s) · (1 − sigmoid(s)) ·

[
∂l

∂s(l)

]

2.1.4 Module ReLU

The forward pass is implemented with the following: s(l) = { 0 if x(l) < 0
x(l) otherwise

And the backward pass is:
[

∂l

∂s(l+1)

]
=

[
∂l

∂s(l)

]
if x(l) > 0 0 otherwise

2.2 Main Module

2.3 Sequential

The sequential method allows to set all the network’s layers, and store them in a list:
model.Sequential(Linear(2,25), ReLU(),Linear(25,25),ReLU(),Linear(25,1),Tanh()) means

that the figure 1 is created.
Then each module can be called in the class in the following way:

1 for cur_module in self.operations_l:

2 x = cur_module(x) #forward pass

3 for cur_module in self.operations_l[::−1]:
4 x = cur_module.backward(x) #backward pass

x1

x2

y1

Figure 1: Created layer by sequential with two hidden layers and 25 units

Page 3 sur 4

3 Results

Figures 2 and 3 show that the error rate and loss decrease as we want and the figure
4 shows that target class is correctly predicted after 10 training epochs.

Figure 2: Error-rate through the epochs Figure 3: Loss through epochs

Figure 4: Visual verification of Predicted vs Target class

4 Conclusion

This working project allowed us to learn how PyTorch works and implement a
framework on our own. This allowed to deepen our understanding of the Deep-
Learning course.

Page 4 sur 4

