Deconfining disordered phase in two-dimensional quantum link models
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We explore the ground-state physics of two-dimensional spin-1/2 U(1) quantum link models, one
of the simplest non-trivial lattice gauge theories with fermionic matter within experimental reach
for quantum simulations. Whereas in the large mass limit we observe Neél-like vortex-antivortex
and striped crystalline phases, for small masses there is a transition from the striped phases into
a disordered phase whose properties resemble those at the Rokhsar-Kivelson point of the quantum
dimer model. This phase is characterized on ladders by boundary Haldane-like properties, such as
vanishing parity and finite string ordering. Moreover, from studies of the string tension between
gauge charges, we find that whereas the striped phases are confined, the novel disordered phase
present clear indications of being deconfined. Our results open exciting perspectives of studying
highly non-trivial physics in quantum simulators, such as spin-liquid behavior and confinement-
deconfinement transitions, without the need of explicitly engineering plaquette terms.

Driven by tremendous progresses in the manipulation
and control of ultracold quantum gases, this field is en-
tering the era of the quantum simulation of lattice gauge
theories (LGTs) [1], with the long term goal of study-
ing open problems of the early universe, dense neutron
stars, nuclear physics or condensed-matter physics [2—4].
Many theoretical proposals [5-18] and recent seminal ex-
periments with trapped ions [19], quantum dimer models
in Rydberg-atoms-arrays [20], lattice modulation tech-
niques [21-23], or atomic mixtures [24] have shown first
building-blocks of dynamical gauge fields and quantum
link models (QLMs), a generalization of LGT to spin-
like link-variables [25]. However, the implementation of
some building blocks of LGT, such as the ring-exchange
corresponding to magnetic field dynamics in analogue
implementations of quantum electrodynamics, requires
further theoretical and experimental breakthroughs, al-
though there has been progress on isolated plaquettes [26]
and recent promising proposals [27, 28].

In this paper we show how already the simplest mid-
term experimental realizations, without plaquette terms,
may be able to explore a wide area of non-trivial phe-
nomena of LGTs. In particular, we report in this Letter
that the two-dimensional (2D) QLM is characterized by
the emergence of a quantum phase transition between
confined crystalline phases and an exotic deconfined
disordered phase with certain resemblance to Rokshar-
Kivelson (RK) states [29] or resonating valence bond lig-
uids [30-33]. Hence, these relatively simple systems pro-
vide a pristine test-bed for the study of highly non-trivial
physics, such as spin liquids, confinement-deconfinement
transitions, and exotic dynamical or thermalization prop-
erties [20, 34, 35], such as the formation of quantum
many-body scars in constrained systems [36] and their
fundamental link to confinement. Interestingly, QLMs
may be experimentally realized in quantum gases within
the next years. Whereas several proposals using Fermi-
Bose mixtures have been reported [8, 9, 11, 14, 15, 17, 24],
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FIG. 1. (a) Sketch of the QLM model on a square ladder (gray
spins depict staggered boundary conditions) or on a torus (as-
sociating opposite gray spins at the two edges). (b-f) Sketches
of the phases discussed in the text: for p = 0.8 striped phases
(b) Jy = 2.4J, (Sy), (c) Jy = 0.2J, (Sx); for u = —0.8 vortex-
antivortex phases (d) Jy, = 2.4J; (VA) (e) Jy, = 0.2J, (VA'),
and the (f) disordered/deconfined D phase for p = 0 and
Jz = Jy. The size of the bullets depicts (n,), the arrow size
(Sz /), and the plaquette colors the vorticity (Qr). The arrow
sizes of (f) has been scaled up by a factor of 2 for clarity.

we recently discussed [16] a minimalistic realization of
QLMs with a single fermionic species that simulates the
spin-1/2 links using multi-orbital physics in optical su-
perlattices [37]. We note, however, that the latter may
be analogously replaced by hyper-fine or spatial degrees
of freedom allowing for a large flexibility of the proposal.

2D QLM.— We consider in the following a QLM on a
square lattice described by the Hamiltonian

H=-— ZJI',I" (%TSL/%' + hC) + Z,U/rnrv (1)
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FIG. 2. Four-leg cylinder at u = 0: (a) Nearest and next-nearest neighbor flippability correlations, staggered flippability
O(Sy) = 3,.(—)"(Q3), as well as the expectation value of the ring-exchange (R;). (b) Fidelity susceptibility with L = 12, 24
and 36 rungs. (c) Local Hilbert space distribution vy of the central rung (see text). (d) Sketched phase diagram of the QLM.
Color codes depict the von-Neumann bipartite entanglement entropy S,n of the central rung. Points depicts the estimated
phase transition points, by extrapolating the peak positions of the fidelity susceptibility evaluated along the cuts indicated by

the dotted lines (DMRG data).

where wi is the fermionic operator at site r, and n, =
Ylie. In our case the gauge field is given by spin-1/2
operators S: » Dlaced at the link between two neigh-
bouring sites r and r’. The amplitudes Jyr4x = Jp
and Jrri+y = Jy characterize, respectively, the hops
along the 2 and y directions (Fig. 1 (a)). We enforce
at each site the Gauss law [H,G,] = 0 with G, =
Er — M + D peny (Srrik — S5r_k), With erea = 1 and
erep = 0. The staggered potential, prcq = p and
Urep = —p can be interpreted as the mass of particles
on B sites and anti-particles on A sites.

We focus on the ground-states of the QLM at half
fermion filling and gauge vacuum (G, = 0) on square
ladders and cylinders. We study up to L, = 100
rungs and L, = 4 legs by means of density ma-
trix renormalization group (DMRG) techniques [38]
adapted to the local gauge symmetry [39-42]. We in-
troduce at this point the ring-exchange operators R} =
Sl—j:r-l-x 1'_+x,r+x+y r_+x+y7r+ySr—'i_+y,r and R; = (Rr)T
These operators characterize plaquette states: Ry (R;)
flips a vortex (antivortex) into an antivortex (vortex), be-
ing zero otherwise, and Q, = (Rf Ry — Ry Rf) =1 (-1)
for vortex (antivortex) and @, = 0 otherwise [43].

Large mass limit.— First insights are obtained from
the limit |p| > J,,, which, in contrast to the two-leg
QLM [44], is different for 4 > 0 and p < 0. For p > 0,
particles are pinned in B sites (Figs. 1 (b) and (c)). Lo-
cal states are characterized by the expectation value of
two spin-1 operators, Sg(r) = S*(r —k,r)+ S*(r,r + k),
with k = x,y. For J, < J,, second-order terms select
a ground-state manifold of two states with S7(r) = 0.
Fourth-order ring-exchange oc J2JZ/|ul* [16] favors a
configuration of columns of flippable vortex-antivortex
and non-flippable plaquettes (Fig. 1 (b)). We denote
this striped phase Sy. In a 2D model, a correspond-
ing striped phase Sx of alternating flippable and non-
flippable rows of plaquettes is expected for J, < J.
However, on the finite-size cylinders we study, the trans-

lational symmetry along the y direction results in blurred
spin averages (Fig. 1 (¢)). Correlations of the flippability
operators reveal the Sx character (Fig. 2 (a)): whereas
(Q2Q2,,) vanishes, (Q?Q2, ,,) remains finite. Staggered
boundary spins stabilize the Sx ordering in ladders [44].

For large negative mass, —u > J,,, particles are
pinned to the A-sites, reducing the local Hilbert space
to a six-dimensional manifold of spin configurations sat-
isfying Gauss’ law. Second-order processes favor states
with (SZ(r)) = (S5(r)) = 0, leading to a checkerboard
ground-state pattern of vortex-antivortex (VA) plaque-
ttes (Figs. 1 (d) and (e)). For J, < J, we dub this
phase VA, and VA’ for J, < J,. These two phases are
uniquely defined and do not exhibit any spontaneously
broken translational symmetry like in a Neél-like phase.

Emerging disordered phase.— At low p particle fluc-
tuations become important, leading to a particularly
intriguing physics. For g ~ 0 we observe three
distinct phases as a function of J,/J,, as can be
seen in Fig. 2 (b) for the four-leg cylinder by the

distinct diverging peaks in the fidelity susceptibility
— —2In [(To(Jy)[To(J}))]
Xrs = 1My, —jr—o0 T,— )

the ground-state wave-function. We observe a similar
behavior for three- and four-leg ladders [44]. Whereas
for p = 0 for J, < J, (Jy, > J;) the system is in the
Sx (Sy) phase, for J, ~ J, an intermediate gapped phase
occurs characterized by vanishing (Q,) and (Q?), but a
large expectation value of the ring-exchange (R7).

, where |Up) is

A crucial insight on the physics of the intermediate
phase is provided by the analysis of the reduced density
matrix p. = Tr|¥g)(¥y| for the central rung (where the
trace runs over all other rungs) in the (Fock-like) eigen-
basis ¢y, of Sf ., and np. In Fig. 2 (c) we show its diagonal
elements v, = (r|pc|odr), an effective local Hilbert space
distribution, sorted by amplitude, for the case of a four-
leg cylinder. The Sx and Sy phases are strongly local-
ized in Fock space, i.e. v; has most weight for few basis
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FIG. 3. (a) Parity and string order along the boundary legs
of a four-leg ladder, obtained using DMRG for L, = 100
rungs and p = 0; (b) largest eigenvalues of the entanglement
spectrum, obtained after dividing the system into two parts
along the central rung.

states. The intermediate phase, however, exhibits a dras-
tically different, much flatter distribution, where many
local Fock states contribute with similar weight. The dis-
ordered character of the intermediate phase is also wit-
nessed by the entanglement entropy S,y = —Tr(p.In pe),
which we depict in Fig. 2 (d).

The intermediate phase thus closely resembles the
Rokhsar-Kivelson (RK) point, which contains an equal
superposition of all dynamically connected states. We
also show in Fig. 2 (c¢) the corresponding distribution
of vy, for a classical RK state, which compares well to
the ground state obtained by the DMRG simulation.
We estimate the overlap between the two states to be
0.97 (see [44] for a more detailed comparison between
the DMRG simulation of the intermediate phase and the
classical RK state, which also reproduces the spin and
density configuration pattern of Fig. 1 (f)). We hence
characterize the intermediate gapped phase as a disor-
dered (D) phase. Note, that due to the different Gauss’
law on A and B sites, this phase still exhibits a slight par-
ticle imbalance between A and B sites, as well as finite
link-variable expectation values, as shown in Fig. 1 (f).

Edge Haldane order.— We focus at this point on the
edges of a QLM ladder, where the physics can be well
understood from a mean-field-like strongly simplified 1D
model in which we fix the upper boundary links for each
site in a staggered configuration, and allow the lower
spins to fluctuate with an amplitude J,. Six local states
are possible: [04) = (|737) £ [717)/V2, |04) =
(731717 N/V2 o) =777), and 8) = |737).
Gauss’ law imposes further restrictions on the allowed
sequence of these local states: 0 may be followed at its
right by 0 or 3 (0 = 0,8); 0 — 0,0 @ — $3,0; and
B — a,0 (we remove the & index). By construction,
Gauss’ law enforces a Neél-like order of a and 3 states
diluted by an arbitrary number of intermediate 0 or 0
states. The model Hamiltonian, given by

Hip=—Jp Y LSy, a1 — Jy Y ¢LST + He.
(2)

exhibits three ground-state phases (here we neglect a
staggered potential term). For J, < J, the ground
state is ---|a)|B)|a)|B) - - -, whereas for J, > J, the
states ---[0_)[0_)--- and ---]0_)|0_) --- have the low-
est energy. Interestingly, for J, ~ J, an inter-
mediate phase with Haldane-like diluted Neél order
emerges, that resembles the SPT phase of Ref. [16].
We may describe this intermediate phase by a mini-
mal AKLT-like [45] state with a two-fold degenerate en-
tanglement spectrum and a non-vanishing string order
O% = lim |, 4|00 (S26™ Lxcex 5687,) | while parity or-
der 0% = lirnm,g,:/Hoo(ei’T Ycrex Sk) s exponentially
suppressed [44].

While being a drastically simplified description, it cap-
tures essential ingredients of ladder QLMs. In particular,
fixing in a ladder the boundary spins to a staggered con-
figuration enforces the dilute Neél order on the boundary
leg. We, hence, plot in Fig. 3 (a) the string- and parity
order measured along the boundary leg of a 4-leg ladder.
Indeed the D phase is characterized by a finite string or-
der and a vanishing parity order, resembling closely the
SPT phase discussed for the above mentioned 1D model
or the two-leg QLM of Ref. [16]. However, for L, > 2
the parity order remains finite in the D phase if measured
on the inner legs, and the phase is not topological. The
entanglement spectrum is no longer strictly two-fold de-
generate. Interestingly, however, we observe a robust gap
in the entanglement spectrum of the D phase between a
low-lying manifold and the rest.

String tension.— Finally, we discuss the properties of
gauge charges on top of the vacuum state. We insert two
charges by locally adjusting Gauss’ law to G, = +1 on
two sites separated by a distance Lp in z-direction, and
study the string formation for the case of a four-leg cylin-
der. Example configurations are shown in Figs. 4 (a)-(c)
for Sy, Sx and D phases after subtracting the spin and
fermion configuration of the charge-free system. Com-
paring the energy FE(Lp) with the energy Ey of the
charge-free state, we obtain the string tension, St(Lp) =
E(Lp) — Ey (Fig. 4 (d)), which characterizes the confin-
ing properties [40].

Only Sy shows a clear string formation (Fig. 4 (a)).
The tension increases linearly in a staggered way due to
the broken symmetry, as depicted in Fig. 4(d). This is a
clear signature of the confinement of excitations. For the
Sx phase the increase of potential energy is also linear
and very large compared to the other phases. Here, how-
ever, after some distance the string breaks and is wrapped
around the cylinder in y-direction (see Fig. 4 (b)). Also
the string tension flattens after this point as shown in
Fig. 4 (d) for J,/J, = 0.4. Interestingly, the two charges
become, hence, effectively deconfined due to the finite
size of the system in y-direction.

In the D phase the tension grows slowly with Lp and
potentially finally saturates, indicating charge deconfine-
ment. Contrary to the Sx phase we observe in Fig. 4 (c)
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FIG. 4. (a) Average fermionic density and bond configuration
of two charges at a distance of Lp = 12 sites, after substract-
ing the charge-free configuration. We employ DMRG for a
cylinder with L, = 4 legs and L = 36 rungs and p = 0.4J,.
(a) Sy phase (Jy, = 1.8J;), (b) Sx phase (J, = 0.4J,), (c) D
phase (Jy, = Jz). (d) String tension St as a function of the
distance between the defects Lp.

the formation of a symmetric broad but localized per-
turbation of the spin and charge background around the
defects. Even though due to the limited system size we
cannot distinguish the saturation of the string tension
from a further slow (e.g. logarithmic) growth, these re-
sults show that Sx, Sy and D phases exhibit drastically
different confinement and deconfinement properties.

Conclusions.— We studied the ground state of a 2D
spin-1/2 QLM, which may be realizable in quantum gas
lattice gauge simulators in the foreseeable future. Despite
the absence of plaquette terms, 2D QLMs are character-
ized by a highly nontrivial physics. As a main result, we
have found an emergent deconfined disordered phase for
u~ 0and J, ~ Jy, which closely resembles an RK phase.
On finite ladder systems with staggered boundary spins
this phase exhibits Haldane-like ordering at the edge legs.
While being limited to small transversal lengths L, < 4,
the observed features qualitatively remain robust over
two-, three- and four-leg ladders and four-leg cylinders,
strongly hinting that the intermediate disordered phase
may survive in more general 2D lattices, which might
inspire further numerical efforts in this direction.

Our results open the interesting possibility to study a
wealth of phenomena such as deconfinement-confinement
transition and RVB-like physics in quantum gas lattice
gauge simulators, without the need of explicitly realiz-
ing ring-exchange and RK terms. The dynamics of these

systems may be particularly interesting. Further exper-
imental and theoretical studies should reveal the poten-
tially unconventional thermalization properties [35, 36]
of constrained systems with fermionic matter.
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