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In this supplementary material we give details on our numerical results for the simplified 1D
model, two-, three- and four-leg ladders. We also show additional data for the classical RK-states

and the calculation of the string tension.

I. RELATION TO QUANTUM DIMER MODELS

For the limit of |u| > J, Jy, 1 > 0, charges are pinned
to the B-sublattice and the dynamics is reduced to the
spins on the links. Indeed, this limit corresponds to a
model of tightly packed hard-core dimers, a quantum
dimer model on a square lattice. The Hamiltonian in
second order perturbation theory is given by (with oper-
ators as defined in the main text)

JE .
Hysa,0,= ) fSk(r) + o (1)

r

The ellipsis contains ring-exchange terms from fourth or-
der perturbation ~ J2 Jy2 /u3. The physics for this strong-
coupling dimer limit is indeed different from the phase
diagram of Refs. [1]. Traditionally, as in Refs. [1-4] the
quantum dimer-model Hamiltonian is discussed with pla-
quette operators

S (R + R+ Q7. (2)

r

Hopu =

On the square lattice this models have been shown to ex-
hibit several phase transitions as a function of A: Phases
found and discussed e.g. in Ref. [5] are Neel, columnar, or
a plaquette-ordered (also called RVB-solid) phase. At the
phase transition-point between columnar and plaquette-
ordered phase, lies the so called Rokhsar-Kivelson point,
which is discussed in the main text.

II. SIMPLIFIED 1D MODEL

In the following, we present some details on the simpli-
fied 1D model described in Eq. (2) of the main text. As
discussed in the main text, the model can be described
in a basis of six local states:
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with the restrictions on the allowed sequence of these lo-
cal states by Gauss’ law: 0 may be followed at its right by
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FIG. S1. Ground-state energy per site E/L and average en-
tanglement entropy S,n of the simplified 1D model (infinite
DMRG simulation, x = 80). The lighter colored curves depict
the x = 2 ansatz described in the main text and Eq. (3).

Oor B (0—0,8);0—=0,0; @ — B3,0; and § — a,0 (we
remove the + index). As mentioned in the main text the
ground states can be understood from a J, < J, and
Jy > Jp limit as - - - |a)|5)|a)|B) - -+ and ---[0_)|0_) - --
-]0_)|0_) - - crystalline states respectively.

To shed light into the properties of the intermedi-
ate Haldane-like phase, we define the variational MPS
ground state as |¥) = > AI';|o). The I', matrices,
considered as an automorphism of x x x matrices, fulfill
the following simple algebraic relations defined by Gauss’
law. A simple example is given by the following matrices,
with the lowest non-trivial bond dimension y = 2:

ra=\/§< Y 0)

sing 0
Is=T%

cos¢ 0
Fﬁi:ﬂ( 0 ())

Foi:\@<8 CO(;(;S) ®)

and A = {%,%} which resembles an AKLT-model
like state [6]. This ansatz has minimal energy
for ¢min = arctan(gj ;j;,) With this E,;, =
 (2Ja+Jy)?

5T , which gives a reasonably good approx-
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FIG. S2. Mid-system entanglement spectrum of the QLM Eq. (1) of the main text at u = 0 for (a) two-leg ladder, L = 200 (b)
three-leg ladder, L = 100 (c) four-leg ladder, L = 100 (DMRG data).

imation of the actual ground-state energy in this
regime obtained by a DMRG simulation, as shown
in Fig. S1. Also the entanglement entropy of log(2)
describes already well the actual values obtained by
DMRG simulations with a higher bond-dimension (see
Fig. S1). The string order is given by Ogo =
1 o0 (9261 S SEGZ) = (—1)i-19828  while
the parity order Opp = lir1f1|gﬁ_zz‘_>oo(ei7T Lcrax Sk s
exponentially suppressed.

As the Haldane-phase in this toy model, the SPT-phase
is protected by a Z5 X Z5 symmetry, with two m-rotations
in the pseudo-spin space €™+ and e™x. Here, S, is de-
fined as above and a corresponding e™x maps the states
a — B and 04 — 0. For the trial-state of Eq. (3)
we may now define, following the discussion of Pollmann
and Turner in Ref. [7], a generalized order parameter
Oz,xz, = tr (UxU,ULU}) /2. The 2-dimensional repre-
sentations of the symmetry group corresponding to the
MPS ansatz U, and U, are derived from a generalized
transfer matrix and are given by by the actual Pauli-
matrices o, and o,. With this we find Oz,xz, = —1
indicating the topologically non-trivial character of the
phase.

III. 2-LEG LADDER

Let us briefly review the results obtained for Eq. (1) of
the main text for the two-legs ladder system (further de-
tails of the two-leg ladder model are discussed in Ref. [8]).
For staggered boundary links, the model becomes sym-
metric in the mass term u = —p (note that, as men-
tioned in the main text, this is not the case for systems
with more than two legs). In the ground-state phase dia-
gram three different phases emerge corresponding to the
phases obtained in the simplified 1D model of the previ-
ous section.

We would like to stress that the 2D-phase diagram con-
jectured here exhibits certain analogies to the 2-leg lad-
der case. The VO and VA phase, proper of the two-leg
case and symmetric under mass sign exchange, generalize
in the case of ladders with more rungs onto the SX/SY
and VA/VA’ phases. The graph of the von-Neumann
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FIG. S3. Boundary-parity- and string-order of the QLM

Eq. (1) of the main text at p = 0 for (a) two-leg ladder,
L = 200 (b) three-leg ladder, L = 100 (c) four-leg ladder,
L =100 (DMRG data).

entropy, Fig. 2 d, is reminiscent of the order parameter
graph in the two-leg case (Fig. 2 a of Ref. [8]). How-
ever, in the extended case, there appears an emergent
deconfined disordered phase D, which represents one of
the main findings of this work and a crucial element of
novelty in comparison with the previous work.

For 4w = 0 a symmetry protected topological
phase (SPT) emerges. This phase can be well charac-
terized from properties of its entanglement spectrum, as
shown in Fig. S2 (a). The entanglement spectrum \;,
which is the ordered sequence of Schmidt eigenvalues ob-
tained for dividing the system into two parts along the
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FIG. S4. Schematic phase diagram of the two-leg cylinder
model. Color codes depict the von-Neumann bipartite en-
tanglement entropy Syn of the central rung (infinite DMRG
simulation, x = 80).

central rung of the ladder, exhibits a twofold degeneracy
in the SPT phase [9-11], as well as vanishing boundary
parity and finite string order as shown in Fig. S3 (a).

IV. TWO-LEG CYLINDER

For the two-leg cylinder we observe a drastically differ-
ent ground-state phase diagram, as sketched in Fig. S4.
Here, the second order ring-exchange around the cylinder
competes with local charge fluctuations in the y-direction
and, hence, the mechanism described in the main text to
stabilize the distinct phases in the large |u| > J,, J, limit
is strongly affected. In Fig. S4 we show numerical results
for the phase diagram of the two-leg cylinder as a func-
tion of 1 and J,. We only observe two clearly distinct
phases. In the J, < J, and p < 0 regime, we observe a
VA phase, which is characterized by an ordering of the
link-spins in the y-direction. The VA phase exhibits a
quantum phase transition to a VA’ like phase, which is
adiabatically connected to the Sy phase. A distinct Sx
phase is absent.

V. THREE- AND FOUR-LEG LADDER

In Figs. S2 (b) and (c) and S3 (b) and (c) we present
additional data obtained from our DMRG calculations
of the three and four-leg ladder systems at u = 0. The
exact twofold degeneracy in the entanglement spectrum
is lost for more than two legs in the intermediate D phase.
However, we observe the emergence of a distinct gap in
the entanglement spectrum between a manifold of low
lying and higher entanglement states. At the edge the
string and parity order exhibit Haldane-like properties
in the D phase (Fig. S3).
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FIG. S5. Comparison of charge and spin configurations ob-
tained from DMRG results for the intermediate phase (J, =
Jy, p = 0) (plots (a),(c), and (e)) to the RK state obtained
by an equal amplitude overlap of all connected configurations
(plots (b), (d), and (f)) for the four-leg cylinder (a) and (b),
the four-leg ladder (c) and (d), and the three-leg ladder (e)
and (f)

J;l ~ J§’2 R~
Simplified 1D model| 0.2 1.1
two-leg ladder 0.5 1.3
two-leg cylinder - -
three-leg ladder 0.5 1.6
four-leg ladder 0.5 1.5
four-leg cylinder 0.5 1.9

TABLE 1. Estimated critical values of the exchange J, (in
units of J, = 1) for the phase transition to the intermediate
D phase for p = 0.

VI. RK STATES

In Fig. S5 we provide further comparisons to the classi-
cal RK states, obtained by a simple Metropolis sampling
for the classical QLM analogue at infinite temperature,
with the DMRG results of the intermediate phase in the
QLM. The Metropolis sampling does not mix different
symmetry sectors and we make sure that we initialize
the algorithm in a state of the gauge vacuum sector com-
patible with DMRG-simulations. For three- and four-leg
ladders and four-leg cylinders the local spin and charge
configurations compare very accurately.

VII. PHASE DIAGRAM

In Tab. I we summarize our results on the phase tran-
sition points for p = 0 for the different systems analyzed
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FIG. S6. Energy error Ee.: = E(x) — Fo as a function of
the bond dimension x, for different values of J, in the dis-
ordered region and close to the phase transitions (four-leg
cylinder, p = 0, L=40, DMRG results). Fjy is an estimate of
the ground-state energy for a fixed chain length obtained by
fitting the data with an exponential curve.
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FIG. S7. Excitation gap Ae (in units of J;) for the (a) 1D
toy model, (b) 2-leg (c) 4-leg ladder model within the vac-
uum gauge-sector at pu = 0 for different system sized L = 12
(crosses), L = 24 (circle), L = 36 (plus-symbols). The dot-
ted lines indicate the estimated phase-transition position from
Tab. I. (d) Excitation gap as a function of the number of legs
for Jy/Jr = 1 (center of the D-phase) and Jy/J, = 1.8 (Sy-
phase).

in this work. Increasing the number of legs, the phase
transition points behave non-monotonously. However, as
a general trend the region of the intermediate phase ex-
pands and the transition points seem to approach a ratio
JotJe? ~ 1 (in units of .J;) as expected for the 2D limit
with proper lattice rotation symmetry.

The robustness of the disordered phase is confirmed in
the limit of large bond-dimension. In Figure S6 we show
the exponential convergence of the ground-state energy
for increasing y, in the zero mass limit.

This observation can be understood from the calcula-
tion of excitation gap Ae as depicted in Fig. S7. Here
we show for various geometries and models discussed in
the main text the energy gap to the first excited state
within the same gauge sector as the ground-state. The
data clearly shows that the D-phase exhibits a large ex-
citation gap Ae ~ 0.4J,. Interestingly, this value stays
remarkably constant changing the number of legs. For
Jz/Jy — 0 this gap decreases. For the 4-leg ladder sys-
tem, with partially restored x-y symmetry this is also the
case for J,/J, — 0.

VIII. EXTENDED DATA ON THE STRING

TENSION

In Figs. S8, S9, S10 we finally detail the DMRG results
for the calculation of the string-formation and tension be-
tween defects as shown in Figs. (4) and (5) of the main
text. We depict three examples from the Sy (Fig. S8),
D phase (Fig. S9) and Sx (Fig. S10) phases without and
with subtraction of the background charge and spin con-
figurations.
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FIG. S8. (a) Charge and bond average configurations of two defects with distance Lp = 2,4,6,8,12,16 sites. DMRG-data,
L = 36 rungs, p = 0.4J3, Jy/Jz = 0.4 (b) Same as (a) but after substracting background without charges.
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FIG. S9. (a) Charge and bond average configurations of two defects with distance Lp = 2,4,6,8,12,16 sites. DMRG-data,
L =36 rungs, u = 0.4J,, Jy/Jz = 1.0 (b) Same as (a) but after substracting background without charges.

)ttt T T T (b)
L T e R e S N
L O T e L T T A e A |
B T R D D e T DD DEED DUy PR D R R gy ) e
| N A R N A A N N N R R R N

B T T . .
L S e e e T S e e S A

RIS PUEP DU PUE D SN PN U UG S PRI U DU DU [ DI DI ) L et
L S e e A e e N

B T e T T TS . .

I S R R R A A R A A .
e e S S e Sy (P R I —
I S e T e O O Y |

e L D L D L T L I F T
L S S e e S A R N A
B R T e e e R R D D PRSP R e > — |
[ N A B N R R T T R T e e

FIG. S10. (a) Charge and bond average configurations of two defects with distance Lp = 2,4,6,8,12,16 sites. DMRG-data,
L = 36 rungs, p = 0.4J5, Jy/Jz = 1.8 (b) Same as (a) but after substracting background without charges.



