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( 57 ) ABSTRACT 
Described herein are systems and methods that utilize a 
novel hardware - based pooling architecture to process the 
output of a convolution engine representing an output chan 
nel of a convolution layer in a convolutional neural network 
( CNN ) . The pooling system converts the output into a set of 
arrays and aligns them according to a pooling operation to 
generate a pooling result . In certain embodiments , this is 
accomplished by using an aligner that aligns , e . g . , over a 
number of arithmetic cycles , an array of data in the output 
into rows and shifts the rows relative to each other . A pooler 
applies a pooling operation to a combination of a subset of 
data from each row to generate the pooling result . 
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SYSTEMS AND METHODS FOR 
HARDWARE - BASED POOLING 

A . TECHNICAL FIELD 
[ 0001 ] The present disclosure relates generally to systems 
and methods for improving utilization of computing 
resources , such as computational power and storage require 
ments . More particularly , the present disclosure is related to 
systems and methods for improving efficiency of arithmetic 
processes in computer vision applications that use convo 
lutional neural network ( CNN ) architectures to generate 
convolutional and pooling data . 

on the type of pooling function ( e . g . , average or max ) that 
is used in the pooled area . The size and location of the 
pooling window depends on the pooling stride ( i . e . , interval 
or step size ) and the location of the output pixel . Oftentimes , 
the last pooling layer is followed by the final output layer 
( e . g . , a fully connected layer with a soft - max nonlinearity ) 
of the CNN architecture that outputs the final prediction , 
e . g . , as an estimate of a conditional probability , for each 
particular class . 
[ 0006 ] While great progress has been achieved in improv 
ing the performance of convolutional layers by sharing of 
weights and improving arithmetic logic unit utilization , 
pooling layers , which are similarly computationally inten 
sive , have been neglected mainly due to constraints inherent 
to existing neural network architectures . 
[ 0007 ] Accordingly , it would be desirable to have systems 
and methods that improve the performance of pooling layers 
in neural networks to further increase the utilization end 
performance of available computational resources to reduce 
overall computational cost . 

B . BACKGROUND 
[ 0002 ] Neural network - based image classifiers are achiev 
ing significant improvements in automatically learning com 
plex features for classification and object recognition . For 
example , a Convolutional Neural Network ( CNN ) model 
may be used to automatically determine whether an image 
can be categorized as comprising a person or animal . The 
CNN applies a number of hierarchical network layers and 
sub - layers to an input image when making a determination 
or prediction . One characteristic of CNNs is that each 
network layer serves as an output of a previous layer , 
typically starting at a first convolutional layer and ending 
with one or more final layers , e . g . , a fully connected layer 
that includes nodes whose activation values deliver scores 
that indicate a likelihood that the input image can indeed be 
classified as comprising a certain object . 
[ 0003 ] A convolution layer may use several filters known 
as kernels or activation functions that apply to the pixels of 
a convolution window of an image a set of weights . The 
weights have been learned by the CNN during a training 
phase to generate an activation value associated with that 
window . For each filter , the convolution layer may have , for 
each pixel , one node , i . e . , neuron , that outputs an activation 
value that is calculated based on the set of weights . The 
activation value for the convolution window identifies a 
feature or characteristic , such as an edge that can be used to 
identify the feature at other locations within the image . Since 
all nodes for a filter can share the same set of weights , 
reusing weights is a common technique to increase utiliza 
tion of both storage space and computation time . 
[ 0004 ] Among the most important types of layers of a 
CNN is the pooling layer — a basic , independent building 
block that is typically placed after a convolutional layer . As 
applied to images , a pooling layer allows the network to 
determine a feature map and learn a set of features for the 
image . Pooling is viewed as a form of nonlinear sub 
sampling or down - sampling that uses a nonlinear function , 
such as max - pooling or average - pooling , to reduce the 
number of neurons when progressing from layer to layer 
through the network ; thereby , reducing the amount of com 
putation and further increasing computational performance . 
[ 0005 ] Pooling generally involves sliding a pooling win 
dow , e . g . , a two - dimensional square of multiple pixels in 
width and multiple pixels in height , stepwise across small , 
non - overlapping areas ( i . e . , receptive field ) of the output of 
a preceding convolution layer . Aggregating the values of the 
group of neurons in that area provides single output values 
( e . g . , integers ) for each group in a local neighborhood . These 
output values assigned to each group are passed to a sub - 
sequent layer without performing a convolution and depend 

BRIEF DESCRIPTION OF THE DRAWINGS 
[ 0008 ] References will be made to embodiments of the 
invention , examples of which may be illustrated in the 
accompanying figures . These figures are intended to be 
illustrative , not limiting . Although the invention is generally 
described in the context of these embodiments , it should be 
understood that it is not intended to limit the scope of the 
invention to these particular embodiments . 
[ 0009 ] FIG . 1 is an exemplary block diagram of a system 
that uses a pooling unit for performing pooling operations 
according to various embodiments of the present disclosure . 
[ 0010 ] . FIG . 2 is an exemplary block diagram of a pooling 
unit architecture according to various embodiments of the 
present disclosure . 
[ 0011 ] FIG . 3 is a flowchart of an illustrative process for 
using a pooling system shown in FIG . 1 . 
[ 0012 ] . FIG . 4 is a flowchart of an illustrative process for 
using the pooling unit architecture shown in FIG . 2 . 
[ 0013 ] FIG . 5 is a flowchart of an illustrative process for 
performing pooling operations according to various embodi 
ments of the present disclosure . 

DETAILED DESCRIPTION OF EMBODIMENTS 
[ 0014 ] In the following description , for purposes of expla 
nation , specific details are set forth in order to provide an 
understanding of the invention . It will be apparent , however , 
to one skilled in the art that the invention can be practiced 
without these details . Furthermore , one skilled in the art will 
recognize that embodiments of the present invention , 
described below , may be implemented in a variety of ways , 
such as a process , an apparatus , a system , a device , or a 
method on a tangible computer - readable medium . 
[ 0015 ] Components , or modules , shown in diagrams are 
illustrative of exemplary embodiments of the invention and 
are meant to avoid obscuring the invention . It shall also be 
understood that throughout this discussion that components 
may be described as separate functional units , which may 
comprise sub - units , but those skilled in the art will recognize 
that various components , or portions thereof , may be divided 
into separate components or may be integrated together , 
including integrated within a single system or component . It 
should be noted that functions or operations discussed herein 
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may be implemented as components . Components may be 
implemented in software , hardware , or a combination 
thereof . 
[ 0016 Furthermore , connections between components or 
systems within the figures are not intended to be limited to 
direct connections . Rather , data between these components 
may be modified , re - formatted , or otherwise changed by 
intermediary components . Also , additional or fewer connec 
tions may be used . It shall also be noted that the terms 
" coupled , " " connected , ” or “ communicatively coupled ” 
shall be understood to include direct connections , indirect 
connections through one or more intermediary devices , and 
wireless connections . 
[ 0017 ] Reference in the specification to “ one embodi 
ment , " " preferred embodiment , " " an embodiment , ” or 
" embodiments ” means that a particular feature , structure , 
characteristic , or function described in connection with the 
embodiment is included in at least one embodiment of the 
invention and may be in more than one embodiment . Also , 
the appearances of the above - noted phrases in various places 
in the specification are not necessarily all referring to the 
same embodiment or embodiments . 
[ 0018 ] The use of certain terms in various places in the 
specification is for illustration and should not be construed 
as limiting . A service , function , or resource is not limited to 
a single service , function , or resource ; usage of these terms 
may refer to a grouping of related services , functions , or 
resources , which may be distributed or aggregated . Further 
more , the use of memory , database , information base , data 
store , tables , hardware , and the like may be used herein to 
refer to system component or components into which infor 
mation may be entered or otherwise recorded . 
[ 0019 ] . Furthermore , it shall be noted that : ( 1 ) certain steps 
may optionally be performed ; ( 2 ) steps may not be limited 
to the specific order set forth herein ; ( 3 ) certain steps may be 
performed in different orders ; and ( 4 ) certain steps may be 
done concurrently . 
[ 0020 ] FIG . 1 is an exemplary block diagram of a system 
that uses a pooling unit for performing pooling operations 
according to various embodiments of the present disclosure . 
System 100 comprises SRAM 102 , data / weight formatter 
110 , matrix processor 120 , post - processing unit 130 , pooling 
unit 140 , control logic 150 . It is understood that system 100 
may comprise additional circuits and sub - circuits , such as 
logic circuitry and / or control circuitry , caches , local buffers , 
comparators , state machines , additional post processing 
units , and auxiliary devices that perform management func 
tions . 
[ 0021 ] In embodiments , any component in system 100 
may be partially or entirely controlled by control logic 150 
that may monitor the status and operations of system 100 , 
e . g . , when performing an operation such as a convolution or 
other mathematical calculation , and calculate locations from 
which to retrieve data that will be used in a subsequent step 
of the operation . Similarly , control logic 150 may manage 
other components , e . g . , components that are not shown in 
FIG . 1 and / or outside of system 100 . 
[ 0022 ] In embodiments , SRAM 102 stores and makes 
accessible input image data , e . g . , in a data input matrix and 
a weight input matrix 104 . One skilled in the art will 
recognize that other types of storage devices may be used . 
[ 0023 ] In embodiments , based on the weight input matrix 
and data input matrix 104 , data / weight formatter 110 pro - 
duces two outputs 108 , e . g . , each 96 - columns wide , for 

matrix processor 120 , which may process a very large 
number of elements of a matrix in parallel to efficiently map 
data into a matrix operation . Data / weight formatter 110 may 
be implemented as any number of in - line formatters that 
convert , e . g . , data input matrices and weight input matrices 
104 into a suitable format for further processing by matrix 
processor 120 , e . g . , according to specific hardware require 
ments of matrix processor 120 . In embodiments , formatter 
110 converts two - dimensional or three - dimensional matrices 
into a single vector or string that may be represented by a 
row or column before making the so linearized or vectorized 
data available as input 108 to matrix processor 120 . As a 
result , matrix processor 120 can be efficiently utilized to 
execute a matrix multiply operation as part of a convolution 
computation in system 100 to generate output array 122 that 
then may be reassembled , e . g . , into an image . 
[ 0024 ] A neural network model using the embodiments of 
the present disclosure may comprise a pooling network that 
uses max - pooling layers , averaging pooling layers , and other 
neural network layers . The pooling network may be fol 
lowed or preceded by , e . g . , ( by a processing module that 
uses a fully - connected layer and ) , in embodiments , an 
activation layer that uses a known function , such as a 
non - linear function , e . g . , a Rectified Linear Unit ( ReLU ) , 
logistic sigmoid function , and the like . 
[ 0025 ] In embodiments , matrix processor 120 performs a 
convolution operation by applying individual filters ( e . g . , 
weights ) to input image data to detect small features within 
an input image . By analyzing a sequence of different fea 
tures in a different order , macro features may so be identified 
in the input image . Matrix processor 120 may use a different 
set of weights for each input channel , as each input channel 
may contain a different set of information , and each weight 
matrix may be used detect a different feature . In embodi 
ments , matrix processor 120 multiplies a rectangular input 
matrix with a rectangular weight matrix to obtain partial dot 
products that may then be summed to generate an accumu 
lated dot product , i . e . , an integer , which represents an output 
pixel in an output image . In embodiments , output array 122 
may correspond to the dot product of two matrices 108 that 
have been processed by formatter 110 . 
[ 0026 ] In embodiments , matrix processor 120 may per 
form convolution operations that convolve an input with a 
filter to generate output 122 by converting a convolution 
operation into a matrix multiplication ( e . g . , a 96x96 matrix 
multiplication ) . Matrix processor 120 may comprise cir 
cuitry , such as arithmetic logic units , registers , encoders and 
may be implemented as having an arbitrary number of 
columns and rows to perform mathematical accelerated 
operations across a large set of data and weights . These 
large - scale operations may be timed according to the spe 
cific hardware requirements of matrix processor 120 to 
accelerate convolution operations , e . g . , by reducing redun 
dant operations within system 100 and by implementing 
hardware specific logic . 
[ 0027 ] In embodiments , matrix processor 120 outputs 122 
a linearized vector or array representing an output channel 
that may be stored in storage within post - processing unit 
130 . In embodiments , pooling unit 140 operates on a single 
output channel of matrix processor 120 , such that output 122 
or post - processed output 124 is an array that may otherwise 
not conveniently map into a matrix operation . Therefore , in 
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embodiments , output array 122 may be reformatted into a 
suitable format for pooling unit 140 to increase the efficiency 
of system 100 . 
[ 0028 ] In contrast , conventional implementations that 
employ a vector engine that performs vector operations on 
a stored convolution would lead to rather complex and 
inefficient pooling operations the output of a highly effi 
ciency matrix processor , such as matrix processor 120 , in 
part , because some values in output array 122 may be 
adjacent while others may not . In short , a pooling algorithm 
following a convolution operation by matrix processor 120 
would have to process a combination of values in output 
array 122 that are not presented in a convenient shape or 
format for common pooling methods . Therefore , in embodi 
ments , output array 122 is reformatted in order to allow for 
the application of improved pooling methods to a high 
efficiency matrix processor 120 . 
[ 0029 ] To achieve this , in embodiments , hardware pooling 
unit 140 , in response to receiving output array 122 , e . g . , as 
processed by post - processing unit 130 , reformats the 
received data into a grid format , such that some elements of 
output array 122 may be aligned in a vertical direction and 
others may be aligned in a horizontal direction , such that 
pooling can be directly applied without the need to perform 
cumbersome , computational - intensive intermediate steps 
and data storage operations . In embodiments , formatter 110 
may reformat different shapes of input matrix data into 
columns and rows suitable for matrix processor 120 . In 
embodiments , formatting may be performed dynamically to 
accommodate processing of matrices that have differing 
input sizes . 
[ 0030 ] In embodiments , pooling unit 140 applies a pooling 
function , e . g . , average pooling and max pooling , to the 
reformatted data in order to generate and output pooled data 
106 that may then be written and stored in SRAM 102 , e . g . , 
as a feature map . The internal operation of pooling unit 140 
will be described in more detail with respect to FIG . 2 . 
[ 0031 ] In embodiments , matrix processor 120 outputs a set 
of convolution data , e . g . , output array 122 , while accumu 
lating and computing the next set of convolution data . 
Similarly , pooling unit 140 generates output 106 on - the - fly 
from data shifted out of matrix processor 120 , thus , covering 
the cost of pooling and reducing computation time when 
compared to software - based pooling methods , which require 
that a convolution be stored in intermediate storage prior to 
being passed through a pooling layer . 
[ 0032 ] In embodiments , post - processing unit 130 receives 
data , e . g . , a dot product result that corresponds to an output 
channel , from the bottom row of matrix processor 120 , e . g . , 
via output flip - flops ( not shown ) that form a shift register . 
Post - processing unit 130 may apply , e . g . , a non - linear ReLU 
function to output array 122 . 
[ 0033 ] It is noted that padding , e . g . , zero - padding , may be 
performed at the edges of a matrix prior to a convolution 
layer operation in order to obtain a predetermined output 
feature map size . In embodiments , padding may be enabled 
if the stride is set to a value greater than 1 . If padding is 
enabled , control logic 150 may treat certain columns as 
zeros , such that the divisor in an average pooling operation 
is adjusted to equal the sum of the non - zero pooling values 
involved in the average calculation . 
[ 0034 ] FIG . 2 is an exemplary block diagram of a pooling 
unit architecture according to various embodiments of the 
present disclosure . Pooling unit 200 may comprise row 

aligner 206 , write aligner 204 , pooling array 208 , pooler 
210 . In embodiments , pooler 210 may comprise a max unit 
( not shown ) , averaging unit 212 , or any other unit that may 
perform pooling operations to generate output 230 . In 
embodiments , averaging unit 212 performs and averaging 
function by using summing element 214 followed by divide 
and or scale unit 216 . 
100351 Input 202 may correspond to a set of feature maps . 
In embodiments , input 202 constitutes an output channel 
that has been produced according to the requirements of a 
high - efficiency matrix processor , for example , a matrix 
processor disclosed U . S . patent application Ser . No . 15 / 710 , 
433 entitled “ Accelerated Mathematical Engine , ” which 
reference is incorporated herein in its entirety . 
[ 0036 ] In embodiments , pooling unit 200 , in response to 
receiving input 202 , reformats the data therein into the 
equivalent of a grid pattern to which conventional pooling 
methods may be applied , for example , to reduce the height 
and width of the feature maps by a factor of two . In 
embodiments , pooling unit 200 accomplishes reformatting 
by arranging and storing input 202 ( e . g . , in row aligner 206 ) 
in a number of rows that have the same width as input 202 , 
such that each row comprises sections of data that corre 
spond to a group of neighborhood values in a matrix to 
which a pooling operation may be applied to obtain a 
pooling result . In embodiments , once the rows are aligned 
such that those sections that belong to the same neighbor 
hood can be extracted , pooling may be easily performed , 
e . g . , by pooler 210 . In embodiments , the combination of 
sections pooled in this manner represents a pooling result of 
an entire pooled output channel of a convolution . 
[ 0037 ] In embodiments , row aligner 206 stores input 202 
in such a way that it can be accessed and read by pooler 210 
as to - be - pooled data . In other words , the output channel of 
the matrix processor may be reformatted to a format that can 
be read easily pooled by pooler 210 while maintaining a 
stream of input data 102 . In embodiments , row aligner 206 
is controlled by a controller ( not shown ) to shift incoming 
input 202 prior to writing the result into a number of pooling 
arrays 208 , e . g . , 3 arrays that comprise the to - be - pooled 
data . 
10038 ] In embodiments , pooler 210 identifies suitable val 
ues in row aligner 206 for use in a particular pooling 
calculation and extracts from pooling arrays 208 a number 
of values to compute a pooling result . The pooling result 
depends on the type of pooling function used and may be an 
average value , a maximum value , or an intermediate value 
( e . g . , a sum ) that may be converted into a suitable pooling 
result . In embodiments , divide and or scale unit 216 may 
follow averaging unit 212 and may be implemented as a 
multiply - and - shift circuit that generates output 230 . In 
embodiments , pooler 210 may access pooling array 208 to 
process any subsection of pooling array 208 that comprises 
a number of to - be - pooled values . For example , e . g . , pooler 
210 may pool 9 values corresponding to a 3x3 pooling 
window to generate an average pooling value . It is under 
stood that the pooling window may assume any arbitrary 
size and shape depending on parameters settings . 
10039 ] In embodiments , input 202 is read , and reformat 
ting is applied over a period of n arithmetic cycles , e . g . , 
using a method for aligning rows of data ( further discussed 
with respect to FIG . 4 ) to generate pooling results 230 in 
every cycle , e . g . , one row at a time . In embodiments , once 
an output channel is read , e . g . , as input 202 , the next output 
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channel may be read and reformatting may be applied , for 
example , by using a different set of memory that stores the 
rows of data in a different pooler 212 , until all output 
channels provided by the matrix processor are processed and 
the results 230 can be output . It is understood that portions 
of an output channel and , in general , different output chan 
nels may be processed at different times using other methods 
and other circuit configurations than those depicted in FIG . 
2 and accompanying text . As those skilled in the art will 
appreciate , additional pooling layers may be used to output 
higher level or refined feature maps . 
[ 0040 ] In embodiments , pooling unit 200 computes pool 
ing results as fast as matrix processor 120 to generate output 
122 . Pooling unit 140 may apply a stride of , e . g . , n = 2 or n = 3 , 
to control the amount of elements the sliding window 
crosses between calculations . A person of skill in the art will 
appreciate that the sliding mechanism for pooling layers 
operates in a similar manner as that in a convolution layer 
that , for example , uses a common kernel size of 2 or 3 , with 
the difference that the average or the largest value is selected 
in the pooling window . 
[ 0041 ] In embodiments , pooling unit 200 receives the 
processed data and performs a computation on a set of arrays 
that may be spatially shifted relative to each other . In 
embodiments , pooling result 124 is pulled or shifted by a 
state machine ( not shown ) into an output array , e . g . , one per 
clock cycle . The state machine may perform additional 
operations on pooling result 124 prior to sending data to 
SRAM 102 or some other post - processing unit ( not shown ) . 
0042 ] It is understood that pooling unit 200 may further 
comprise components and sub - circuit circuits not shown in 
FIG . 2 , such as a control unit that coordinates the sequence 
of operations of any number of components coupled with 
pooling unit 200 . For example , the control unit may deter 
mine the number and location of data points that are 
involved in a given operation without modifying the 
sequence of the operation itself . 
[ 0043 ] FIG . 3 is a flowchart of an illustrative process for 
using a pooling system shown in FIG . 1 . Process 300 begins 
step 302 when data from a convolution engine is received , 
e . g . , at a pooling unit and at every n cycles . In embodiments , 
the data is received in the form of a data array and represents 
an output channel of a convolution layer in a CNN . 
[ 0044 ] At step 304 , the array is converted into a set of 
arrays that are aligned according to a pooling operation . In 
embodiments , the pooling operation uses at least two arrays 
from the set of arrays to apply a pooling operation , at step 
306 , to generate pooling results , e . g . , one result per cycle . 
[ 0045 ] Finally , at step 308 , the pooling result is output , 
e . g . , as one row per arithmetic cycle , into a memory device . 
[ 0046 ] FIG . 4 is a flowchart of an illustrative process for 
using the pooling unit architecture shown in FIG . 2 . Process 
400 begins step 402 when a hardware - based pooling unit 
receives from a convolution engine a set of data arrays that 
each have a predefined relationship with each other . 
[ 0047 ] At step 404 , using the hardware - based pooling unit , 
a pooling operation is applied to data in at least two arrays 
from the set of data arrays to obtain a pooling result , e . g . , an 
average or max pooling result . The pooling operation may 
be applied according to a stride value . In addition , this 
hardware - based pooling method takes advantage of a 1 : 1 
output channel to input channel relationship that , advanta 
geously eliminates the need to write a convolution result into 
intermediate memory . 

[ 0048 ] At step 406 , the pooling result is output , e . g . , as one 
row of data points per cycle that each represent a neuron in 
a layer of the CNN . 
f0049 ] FIG . 5 is an exemplary block diagram illustrating 
a process for performing pooling using the pooling unit 
architecture shown in FIG . 2 . In embodiments , the matrix 
processor 502 of the pooling unit architecture outputs output 
channel 504 . Since a pooling operation may be treated as a 
convolution with fixed weights a matrix processor could be 
used to perform the pooling operation . However , since there 
is typically only a single output channel in pooling , operat 
ing only one output channel of multi - output channel matrix 
processor at a time is a rather inefficient undertaking that 
unnecessarily ties up computing resources . Therefore , to 
increase computing efficiency , in embodiments , output chan 
nel 504 may be written into a number of rows 506 - 510 that 
are aligned , e . g . , by a row aligner as shown in FIG . 2 , such 
that each row 506 - 510 is shifted against another in subse 
quent cycles . In embodiments , rows Y = 0 , Y = 1 , and Y = 2 in 
FIG . 5 may hold output channel 504 and may have been 
written and stored in respective cycles o through 2 . 
[ 0050 ] For example , in a cycle 0 , at least a first section of 
input 202 is stored , e . g . , left aligned , into row Y = 0 . In the 
following cycle , cycle 1 , the same section is stored into row 
Y = 1 , and so on , such that it takes three reading cycles to fill 
rows 506 - 510 . Once rows 506 - 510 are populated , data from 
rows 506 - 510 can be combined to perform pooling calcu 
lations . For example , 3 values from each of row 506 - 510 
may be combined to 9 values that generate pooling value 
514 as a result . 
[ 0051 ] It is noted that of pooling calculations may be 
performed in parallel . For example , to maintain a stream of 
incoming output channels 504 , the number of pooling cal 
culations may be equal to the total number of output 
channels in matrix processor 502 , such that regardless of 
kernel size , pooling data corresponding to the entire width 
518 of matrix processor 502 may be output . 
[ 0052 ] In embodiments , the shift from one row to another 
corresponds to a shift of a pooling window when convolving 
across a matrix to generate pooling results . In embodiments , 
the shift that is attributable to the pooling window is defined 
by the number of cycles and may correspond to a stride 
having a value that is defined by the same number of cycles . 
In short , the stride dictates how often pooling data is output . 
For example , for a stride of 2 , pooling values may be output 
every other cycle , thereby , skipping a row ( or column ) 
between outputs . 
[ 0053 ] In embodiments , to create a sliding window of 
three rows of storage that slide one at a time , in a third cycle 
512 , the values of the first row 506 may be overwritten , such 
that the cycles use the set of three rows 506 - 510 and , based 
on pooling parameters , output a pooling calculation result . 
[ 0054 ] It is understood that the number of rows of storage 
corresponds to the size of the kernel that is supported and 
that parameters such as window size , stride size , type of 
pooling used , etc . , may be determined and controlled inde 
pendent from the pooling process itself . 
[ 0055 ] One skilled in the art will recognize no computing 
system or programming language is critical to the practice of 
the present invention . One skilled in the art will also 
recognize that a number of the elements described above 
may be physically and / or functionally separated into sub 
modules or combined together . 
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[ 0056 ] It will be appreciated to those skilled in the art that 
the preceding examples and embodiments are exemplary 
and not limiting to the scope of the present disclosure . It is 
intended that all permutations , enhancements , equivalents , 
combinations , and improvements thereto that are apparent to 
those skilled in the art upon a reading of the specification 
and a study of the drawings are included within the true 
spirit and scope of the present disclosure . It shall also be 
noted that elements of any claims may be arranged differ 
ently including having multiple dependencies , configura 
tions , and combinations . 
What is claimed is : 
1 . A pooling unit architecture comprising : 
a controller ; 
an aligner coupled to the controller , the aligner , in 

response to receiving input data , aligns the input data 
into rows to generate a pooling array and , over a 
number of arithmetic cycles , shift the rows relative to 
each other to reformat the input data into reformatted 
data ; and 

a pooler coupled to the aligner , the pooler applies , in 
subsequent arithmetic cycles , a pooling operation to at 
least some of the reformatted data to obtain a pooling 
output that comprises a pooling value , wherein a subset 
of data from each row is combined to a set of data from 
which the pooling value is generated . 

2 . The pooling unit according to claim 1 , wherein the 
input data has been generated by a matrix processor . 

3 . The pooling unit according to claim 2 , wherein , to 
maintain a stream of the input data , the pooling output is 
generated at a same rate as a rate at which the matrix 
processor generates the input data . 

4 . The pooling unit according to claim 2 , wherein the 
pooler performs one or more pooling calculations in parallel , 
and wherein the number of pooling calculations equals a 
number of output channels in the matrix processor , such that , 
independent of a kernel size , the pooling output corresponds 
to a width of the matrix processor . 

5 . The pooling unit according to claim 1 , further com 
prising a multiply - and - shift circuit coupled to the pooler , the 
multiply - and - shift circuit generates the pooling output based 
on the pooling operation . 

6 . The pooling unit according to claim 1 , wherein the 
input data corresponds to a set of feature maps , and wherein 
the pooler uses the reformatted input data to reduce , by a 
predetermined factor , at least one of a height and a width of 
the set of feature maps . 

7 . The pooling unit according to claim 1 , wherein the rows 
have the same width as the input data , each row comprising 
sections of data that correspond to a set of neighborhood 
values in a matrix . 

8 . The pooling unit according to claim 1 , further com 
prising a state machine that shifts the pooling output into an 
output array . 

9 . The pooling unit according to claim 1 , wherein the 
controller determines , without modifying the sequence of 
the pooling operation itself , a number and a location of data 
points involved in a pooling operation . 

10 . The pooling unit according to claim 1 , wherein a shift 
from one row to another row corresponds to a shift of a 
pooling window that convolves across a matrix at a stride 
value , the shift being defined by the number of arithmetic 
cycles . 

11 . A method for using a hardware - based pooling system , 
the method comprising : 

receiving from a convolution engine an array of data that 
represents an output channel of a convolution layer in 
a convolutional neural network ( CNN ) ; 

converting the array of data into a set of arrays that are 
aligned according to a pooling operation that applies 
data to at least two arrays of the set of arrays to generate 
a pooling result ; and 

outputting the pooling result into a memory device . 
12 . The method according to claim 11 , wherein the array 

of data is received at a hardware - based pooling unit . 
13 . The method according to claim 11 , wherein arrays of 

data are received at intervals of a number of arithmetic 
cycles . 

14 . The method according to claim 11 , wherein pooling 
results are generated at each interval . 

15 . The method according to claim 14 , wherein pooling 
results are output at each interval . 

16 . The method according to claim 11 , wherein the array 
of data corresponds to a set of feature maps . 
17 . A method for using a pooling unit architecture , the 

method comprising : 
receiving , at a hardware - based pooling engine , a set of 

data arrays that each have a predefined relationship 
with each other ; 

using the hardware - based pooling unit , applying , accord 
ing to a stride value , a pooling operation to data in at 
least two arrays from the set of data arrays to obtain a 
pooling result without having to satisfy a requirement 
of writing a convolution result into memory ; and 

outputting the pooling result as a row of data points that 
each represent a neuron in a layer of a convolutional 
neural network ( CNN ) . 

18 . The method according to claim 17 , wherein the set of 
data arrays are received from a convolution engine . 

19 . The method according to claim 17 , wherein obtaining 
the pooling result utilizes a one - to - one relationship between 
an output channel and an input channel . 

20 . The method according to claim 17 , wherein pooling 
result comprises one of an average pooling result and a max 
pooling result . 


