(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property 3

Organization
=

International Bureau

(43) International Publication Date

31January 2019 (31.01.2019) WIPO I PCT

(10) International Publication Number

WO 2019/022872 Al

(51) International Patent Classification:
GO6F 17/16 (2006.0 1) GO6F 15/18 (2006.01)

GO6F 15/16 (2006.01) "

(21) International Application Number:
PCT/US20 18/0386 18

(22) International Filing Date: (81)
20 June 2018 (20.06.2018)

(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:
62/536,399 24 July 2017 (24.07.2017) us
15/710,433 20 September 2017 (20.09.2017) US
62/625,25 1 01 February 2018 (01.02.2018) US
15/920,156 13 March 2018 (13.03.2018) us

(71) Applicant: TESLA, INC. [US/US]; 3500 Deer Creek Rd.,
Palo Alto, CA 94304 (US).

(72) Inventors. DAS SARMA, Debjit; 3500 Deer Creek Rd.,
Pao Alto, CA 94304 (US). TALPES, Emil; 3500 Deer

(84)

Creek Rd., Palo Alto, CA 94304 (US). BANNON, Peter,
Joseph; 3500 Deer Creek Rd., Palt Alto, CA 94304 (US).

Agent: PARK, Jong, Andrew, H.; Van Pdt, Yi & James
LLP, 10050 N. Foothill Blvd., Suite 200, Cupertino, CA
95014 (US).

Designated States (unless otherwise indicated, for every
kind d national protection available): AE, AG, AL, AM,
AO, AT,AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO,
Dz, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,
KR, KW,KZ, LA, LC, LK, LR, LS, LU, LY,MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind d regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,

(54) Title: VECTOR COMPUTATIONAL UNIT

100 ~

Cata Input

-"-103

v P S S S S 'S

105«

Weight Input

~"M07

Control
Unit

111 Vector Engine

Post-Processing Unit

fetttes

Figure 1

we 20197022272 A1 NI IO 000 A O

(57) Abstract: A microprocessor system comprises a computational array and a vector computational unit. The computational array
includes aplurality of computation units. The vector computational unit isin communication with the computational array and includes
aplurality of processing elements. The processing elements are configured to receive output data elements from the computational
array and process in parallel the received output data elements.

[Continued on next page]

WO 2019/022872 AL {3l DT oo [Qe

TM), European (AL, AT, BE, BG, CH, CY, CZ DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, S|, SK, SM,
TR), OAPI (BF, BJ, CF, CG, Cl, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:
— with international search report (Art. 21(3))

WO 2019/022872 PCT/US2018/038618

VECTOR COMPUTATIONAL UNIT

CROSS REFERENCE TO OTHER APPLICATIONS

[0001] This application claims priority to U.S. Provisional Patent Application No.
62/625,251 entitled VECTOR COMPUTATIONAL UNIT filed February 1, 2018, and claims
priority to U.S. Provisional Patent Application No. 62/536,399 entitled ACCELERATED
MATHEMATICAL ENGINE filed July 24, 2017, and is a continuation-in-part of co-pending U.S.
Patent Application No. 15/710,433 entitted ACCELERATED MATHEMATICAL ENGINE filed
September 20, 2017, which claims priority to U.S. Provisional Patent Application No. 62/536,399
entitted ACCELERATED MATHEMATICAL ENGINE filed July 24, 2017, al of which are

incorporated herein by reference for all purposes.

BACKGROUND OF THE INVENTION

[0002] Processing for machine learning and artificial intelligence typically requires
performing mathematical operations on large sets of data and often involves solving multiple
convolution layers and pooling layers. Machine learning and artificial intelligence techniques
typically utilize matrix operations and non-linear functions such as activation functions.
Applications of machine learning include self-driving and driver-assisted automobiles. In some
scenarios, computer processors are utilized to perform machine learning training and inference.
Traditional computer processors are able to perform a single mathematical operation very quickly
but typically can only operate on alimited amount of data simultaneously. Asan aternative,
graphical processing units (GPUs) may be utilized and are capable of performing the same
mathematical operations but on alarger set of datain parallel. By utilizing multiple processor
cores, GPUs may perform multiple tasks in parallel and are typically capable of completing large
graphics processing tasks that utilized parallelism faster than atraditional computer processor.
However, neither GPUs nor traditional computer processors were originally designed for machine
learning or artificial intelligence operations. Machine learning and artificial intelligence operations
often rely on the repeated application of a set of specific machine learning processor operations
over very large datasets. Therefore, there exists aneed for amicroprocessor system that supports
performing machine learning and artificial intelligence specific processing operations on large

datasets in parallel without the overhead of multiple processing cores for each parallel operation.

WO 2019/022872 PCT/US2018/038618

BRIEF DESCRIPTION OF THE DRAWINGS

[0003] Various embodiments of the invention are disclosed in the following detailed

description and the accompanying drawings.

[0004] Figure lisablock diagram illustrating an embodiment of a microprocessor system

for performing machine learning processing.

[0005] Figure 2 isablock diagram illustrating an embodiment of a microprocessor system

for performing machine learning processing.

[0006] Figure 3isablock diagram illustrating an embodiment of a microprocessor system

for performing machine learning processing.

[0007] Figure 4A isablock diagram illustrating an embodiment of avector computational

unit for performing machine learning processing.
[0008] Figure 4B is atable illustrating an exemplary aliasing of vector registers.

[0009] Figure 5isaflow diagram illustrating an embodiment of aprocess for determining

processor instructions for amicroprocessor system.

[0010] Figure 6A is aflow diagram illustrating an embodiment of aprocess for the running

execution of avector computational unit.

[0011] Figure 6B is aflow diagram illustrating an embodiment of a process for processing

vector data by avector computational unit.

[0012] Figure 7 isablock diagram illustrating an embodiment of an encoding format for a

vector computational unit instruction.

[0013] Figure 8isaflow diagram illustrating an embodiment of aprocess for performing a

single vector computational unit instruction by avector computational unit.

[0014] Figure 9isadiagramillustrating an exemplary instruction cycle of avector

computational unit.

[0015] Figure 10 isablock diagram illustrating an embodiment of acomputation unit of a

computational array.

WO 2019/022872 PCT/US2018/038618

DETAILED DESCRIPTION

[0016] The invention can be implemented in numerous ways, including as aprocess; an
apparatus; a system; acomposition of matter; a computer program product embodied on a computer
readable storage medium; and/or aprocessor, such as aprocessor configured to execute instructions
stored on and/or provided by amemory coupled to the processor. In this specification, these
implementations, or any other form that the invention may take, may bereferred to as techniques.
In general, the order of the steps of disclosed processes may be altered within the scope of the
invention. Unless stated otherwise, acomponent such as aprocessor or amemory described as
being configured to perform atask may beimplemented as ageneral component that is temporarily
configured to perform the task at agiven time or a specific component that is manufactured to
perform the task. Asused herein, the term 'processor’ refers to one or more devices, circuits,

and/or processing cores configured to process data, such as computer program instructions.

[0017] A detailed description of one or more embodiments of the invention is provided
below along with accompanying figures that illustrate the principles of the invention. The
invention is described in connection with such embodiments, but the invention isnot limited to any
embodiment. The scope of the invention is limited only by the claims and the invention
encompasses humerous alternatives, modifications and equivalents. Numerous specific details are
set forth in the following description in order to provide athorough understanding of the invention.
These details are provided for the purpose of example and the invention may be practiced according
to the claims without some or all of these specific details. For the purpose of clarity, technical
material that isknown in the technical fields related to the invention has not been described in

detail so that the invention isnot unnecessarily obscured.

[0018] A microprocessor system utilizing avector computational unit and avector
computational unit instruction set architecture is disclosed. For example, amicroprocessor system
includes a computational array in communication with avector computational unit. In various
embodiments, acomputational array isamatrix processor capable of performing arithmetic
operations on two input vectors and includes a plurality of computation units to receive the M
operands and N operands from the input vectors. In some embodiments, the computation units are
sub-circuits that include an arithmetic logic unit, an accumulator, and a shadow register for
performing operations such as generating dot-products and performing various processing for
convolution. Unlike conventional graphical processing unit (GPU) or central processing unit

(CPU) processing cores, where each core is configured to receive its own unique processing

WO 2019/022872 PCT/US2018/038618

instruction, the computation units of the computational array each perform the same computation in
parallel in response to an individual instruction received by the computational array. In various
embodiments, the vector computational unit includes aplurality of processing elements for
performing load, arithmetic, and store operations on avector of input datain parallel. The
processing elements of the vector computational unit are configured to receive an output from the
computational array. Invarious embodiments, the output of the computational array and the input
into the vector computational unit isan array of data. The received input to the vector
computational unit is processed in paralel in response to a single processor instruction. Similar to
the computational array, the processing elements of the vector computational unit each perform the
same computation in parallel in response to an individual instruction received by the vector
computational unit. In some embodiments, the microprocessor system further includes a control
unit configured to provide instructions to the vector computational unit. Each single processor
instruction may specify aplurality of component instructions to be executed by the vector
computational unit. In response to asingle instruction, each of the plurality of processing elements
of the vector computational unit processes different data elements of the vector input in parallel
with the other processing elements. In some embodiments, the output of the vector computational

unit is fed into apost-processing unit for performing post-processing such as pooling operations.

[0019] In some embodiments, amicroprocessor system comprises at least a computational
array and avector computational unit. For example, acomputational array is communicatively
connected to avector computational unit such that the output of the computational array is fed as
input to the vector computational unit. In various embodiments, the computational array includes a
plurality of computation units. For example, the computation units may be sub-circuits of amatrix
processor that include the functionality for performing one or more multiply, add, and shift
operations. As another example, computation units may be sub-circuits that include the
functionality for performing adot-product operation. In various embodiments, the computational
array includes a sufficient number of computation units for performing multiple operations on the
datainputsin parallel. For example, a computational array configured to receive M operands and
N operands may include a least M x N computation units. In various embodiments, the
microprocessor system further comprises a control unit for coordinating processing between the
computational array and avector computational unit. For example, the control unit may coordinate
data from memory to be fed into the computational array, data from the computational array to be
fed into the vector computational unit, and/or data from the vector computational unit to be stored
in memory or fed into apost-processing unit. In some embodiments, the control unit is configured

to provide computational array instructions to the computational array, vector computational unit

WO 2019/022872 PCT/US2018/038618

instructions to the vector computational unit, and/or post-processing instructions to apost-

processing unit.

[0020] In some embodiments, the vector computational unit in communication with the
computational array includes aplurality of processing elements configured to receive asinput the
output data elements from the computational array. For example, avector computational unit, such
as avector engine, receives as input avector for processing. The vector computational unit may
include aprocessing element for each element of the input vector. An example vector
computational unit configured to receive avector of N elements (or operands) may include N
processing elements for processing the N elements in parallel. In various embodiments, the
processing elements are configured to receive output data elements from the computational array.
For example, the output from the computational array may be avector of data elements that are fed
to bereceived by the processing elements of the vector computational unit. In various
embodiments, each vector computational unit processes in parallel the received output data
elements from the computational array in response to a single processor instruction. For example, a
single processor instruction is applied to each of the processing elements of the vector

computational unit to be performed on the corresponding data element.

[0021] In some embodiments, acontrol unit is configured to provide at least asingle
processor instruction to the vector computational unit. The single processor instruction specifies a
plurality of component instructions to be executed by the vector computational unit (e.g., in
response to the single processor instruction). For example, acontrol unit provides to the vector
computational unit asingle vector instruction, such as an instruction triad, that includes multiple
component instructions. In some embodiments, an instruction triad is a simple processor
instruction that includes up to three component instructions, such as a separate load instruction,
arithmetic logic unit (ALU) instruction, and store instruction. The three component instructions are
received and executed by the vector computational unit (e.g., in response to the instruction triad).
For example, avector computational unit receiving an instruction triad that bundles aload
instruction, an ALU instruction, and a store instruction executes the load instruction, the arithmetic
instruction, and the store instruction. In various embodiments, in response to the single processor
instruction, the plurality of processing elements of the vector computational unit are configured to
process different data elements in parallel with other processing elements. For example, each
processing element is capable of processing in parallel adifferent data element from the input
vector to the vector computational unit. As another example, each of the component instructions of

asingle vector processor instruction triad may be applied to each of the elements of avector input

WO 2019/022872 PCT/US2018/038618

to complete the processing of an entire input vector of N elements in parallel using the vector

computational unit.

[0022] Figure lisablock diagram illustrating an embodiment of amicroprocessor system
for performing machine learning processing. Inthe example shown, microprocessor system 100
includes control unit 101, data input 103, weight input 105, matrix processor 107, vector engine
111, and post-processing unit 115. Data input 103 and weight input 105 are input modules for
preparing data for matrix processor 107. In some embodiments, data input 103 and weight input
105 each include an input data formatter, a cache or buffer, and/or alogic circuit for preparing data
for matrix processor 107. For example, data input 103 may prepare N operands from atwo-
dimensional array corresponding to image data and weight input 105 may prepare M operands
corresponding to avector of weight values to be processed by matrix processor 107. In some
embodiments, the process of Figure 5is performed to prepare instructions for operating on
microprocessor system 100, including matrix processor instructions for matrix processor 107 and
vector engine instructions for vector engine 111. In some embodiments, microprocessor system
100, including vector engine 111, performs the processes described below with respect to Figures
6A, 6B, and 8.

[0023] In some embodiments, matrix processor 107 isacomputational array that includes a
plurality of computation units. For example, amatrix processor receiving M operands and N
operands from weight input 105 and data input 103, respectively, includes M x N computation
units. In the figure shown, the small sguares inside matrix processor 107 depict that matrix
processor 107 includes alogical two-dimensional array of computation units. Computation unit
109 is one of aplurality of computation units of matrix processor 107. In some embodiments, each
computation unit is configured to receive one operand from data input 103 and one operand from
weight input 105. In some embodiments, the computation units are configured according to a
logical two-dimensional array but the matrix processor is not necessarily fabricated with
computation units laid out as aphysical two-dimensional array. For example, the i-th operand of
data input 103 and the j-th operand of weight input 105 are configured to be processed by the i-th x

j-th computation unit of matrix processor 107.

[0024] In various embodiments, the data width of components data input 103, weight input
105, matrix processor 107, vector engine 111, and post-processing unit 115 are wide data widths
and include the ability to transfer more than one operand in paralel. In some embodiments, data
input 103 and weight input 105 are each 96-bytes wide. In some embodiments, data input 103 is

192-bytes wide and weight input 105 is 96-bytes wide. In various embodiments, the width of data

WO 2019/022872 PCT/US2018/038618

input 103 and weight input 105 is dynamically configurable. For example, datainput 103 may be
dynamically configured to 96 or 192 bytes and weight input 105 may be dynamically configured to
96 or 48 bytes. In some embodiments, the dynamic configuration iscontrolled by control unit 101.
In various embodiments, a datawidth of 96 bytes allows 96 operands to be processed in paralel.
For example, in an embodiment with data input 103 configured to be 96-bytes wide, data input 103

can transfer 96 operands to matrix processor 107 in parallel.

[0025] In various embodiments, matrix processor 107 is configured to receive N bytes from
datainput 103 and M bytes from weight input 105 and includes a least M x N computation units.
For example, matrix processor 107 may be configured to receive 96 bytes from data input 103 and
96 bytes from weight input 105 and includes at least 96 x 96 computation units. As another
example, matrix processor 107 may be configured to receive 192 bytes from data input 103 and 48
bytes from weight input 105 and includes at least 192 x 48 computation units. In various
embodiments, the dimensions of matrix processor 107 may be dynamically configured. For
example, the default dimensions of matrix processor 107 may be configured to receive 96 bytes
from data input 103 and 96 bytes from weight input 105 but the input dimensions may be
dynamically configured to 192 bytes and 48 bytes, respectively. Invarious embodiments, the
output size of each computation unit is equal to or larger than the input size. For example, in some
embodiments, the input to each computation unit istwo 1-byte operands, one corresponding to an
operand from datainput 103 and one from weight input 105, and the output of processing the two
operands is a4-byte result. Asanother example, matrix processor 107 may be configured to
receive 96 bytes from data input 103 and 96 bytes from weight input 105 and output 96 4-byte
results. In some embodiments, the output of matrix processor 107 isavector. For example, a
matrix processor configured to receive two 96-wide input vectors, where each element (or operand)
of the input vector is one byte in size, can output a 96-wide vector result where each element of the

vector result is 4-bytes in size.

[0026] In various embodiments, each computation unit of matrix processor 107 is asub-
circuit that includes an arithmetic logic unit, an accumulator, and a shadow register. In the example
shown, the computation units of matrix processor 107 can perform an arithmetic operation on the
M operands and N operands from weight input 105 and data input 103, respectively. In various
embodiments, each computation unit is configured to perform one or more multiply, add,
accumulate, and/or shift operations. In some embodiments, each computation unit is configured to
perform a dot-product operation. For example, in some embodiments, a computation unit may

perform multiple dot-product component operations to calculate adot-product result. For example,

WO 2019/022872 PCT/US2018/038618

the array of computation units of matrix processor 107 may beutilized to perform convolution
steps required for performing inference using amachine learning model. A two-dimensional data
set, such as an image, may be formatted and fed into matrix processor 107 using data input 103,
one vector a atime. In parallel, avector of weights may be applied to the two-dimensional data set
by formatting the weights and feeding them as avector into matrix processor 107 using weight
input 105. Corresponding computation units of matrix processor 107 perform amatrix processor

instruction on the corresponding operands of the weight and data inputs in parallel.

[0027] In some embodiments, vector engine 111is avector computational unit that is
communicatively coupled to matrix processor 107. Vector engine 11lincludes aplurality of
processing elements including processing element 113. In the figure shown, the small squares
inside vector engine 111 depict that vector engine 111includes aplurality of processing elements
arranged as avector. In some embodiments, the processing elements are arranged in avector in the
same direction as data input 103. In some embodiments, the processing elements are arranged in a
vector in the same direction asweight input 105. In various embodiments, the data size of the
processing elements of vector engine 111isthe same size or larger than the data size of the
computation units of matrix processor 107. For example, in some embodiments, computation unit
109 receives two operands each 1byte in size and outputs aresult 4 bytes in size. Processing
element 113 receives the 4-byte result from computation unit 109 as an input 4 bytes in size. In
various embodiments, the output of vector engine 111isthe same size as the input to vector engine
111. In some embodiments, the output of vector engine 111issmaller in size compared to the
input to vector engine 111. For example, vector engine 111 may receive up to 96 elements each 4
bytes in size and output 96 elements each 1byte in size. In various embodiments, vector engine
111 performs quantization on the output result resulting in the output of vector engine 111being
smaller in size compared to the input to vector engine 111. Invarious embodiments, the
guantization isperformed aspart of asingle instruction. For example, aquantization and anon-
linear function are performed as a single processor instruction. As described above, in some
embodiments, the communication channel from data input 103 and weight input 105 to matrix
processor 107 is 96-elements wide with each element 1byte in size and matches the output size of

vector engine 111 (96-elements wide with each element 1byte in size).

[0028] In some embodiments, the processing elements of vector engine 111, including
processing element 113, each include an arithmetic logic unit (ALU) (not shown). For example, in
some embodiments, the ALU of each processing element is capable of performing arithmetic

operations. In some embodiments, each ALU of the processing elements is capable of performing

WO 2019/022872 PCT/US2018/038618

in parallel arectified linear unit (ReLU) function and/or scaling functions. In some embodiments,
each ALU iscapable of performing anon-linear function including non-linear activation functions.
In various embodiments, each processing element of vector engine 111includes one or more flip-
flops for receiving input operands. In some embodiments, each processing element has access to a
slice of avector engine accumulator and/or vector registers of vector engine 111. For example, a
vector engine capable of receiving 96-elements includes a 96-element wide accumulator and one or
more 96-element vector registers. Each processing element has access to a one-element dlice of the
accumulator and/or vector registers. In some embodiments, each element is4-bytes in size. In
various embodiments, the accumulator and/or vector registers are sized to fit a least the size of an
input data vector. In some embodiments, vector engine 111includes additional vector registers

sized to fit the output of vector engine 111.

[0029] In some embodiments, the processing elements of vector engine 111 are configured
to receive data from matrix processor 107 and each of the processing elements can process the
received portion of datain paralel. As one example of aprocessing element, processing element
113 of vector engine 111 receives data from computation unit 109 of matrix processor 107. In
various embodiments, vector engine 111receives a single vector processor instruction and in turn
each of the processing elements performs the processor instruction in paralel with the other
processing elements. In some embodiments, the processor instruction includes one or more
component instructions, such as aload, a store, and/or an arithmetic logic unit operation. In various

embodiments, ano-op operation may be used to replace acomponent instruction.

[0030] In the example shown, the dotted arrows between data input 103 and matrix
processor 107, weight input 105 and matrix processor 107, matrix processor 107 and vector engine
111, and vector engine 111 and post-processing unit 115 depict a coupling between the respective
pair of components that is capable of sending multiple data elements such as avector of data
elements. Asan example, the communication channel between matrix processor 107 and vector
engine 111 may be 96 x 32 bits wide and support transferring 96 elements in parallel where each
element is 32 hits in size. Asanother example, the communication channel between vector engine
111 and post-processing unit 115 may be 96 x 1byte wide and support transferring 96 elements in
paralel where each element is 1byte in size. In various embodiments, datainput 103 and weight
input 105 are coupled to amemory module (not shown in Figure 1) and may each receive input
data from the memory module. In some embodiments, vector engine 111is additionally coupled to
amemory module (not shown in Figure 1) and may receive input data from the memory module in

addition or alternatively to input from matrix processor 107. Inthe various embodiments, a

WO 2019/022872 PCT/US2018/038618

memory module istypically a static random access memory (SRAM).

[0031] In some embodiments, one or more computation units of matrix processor 107 may
be grouped together into alane such that matrix processor 107 has multiple lanes. In various
embodiments, the lanes of matrix processor 107 may be aligned with either data input 103 or
weight input 105. For example, alane aligned with weight input 105 includes a set of computation
units that are configured to receive asinput every operand of weight input 105. Similarly, alane
aligned with data input 103 includes a set of computation units that are configured to receive as
input every operand of data input 103. In the example shown in Figure 1, the lanes are aligned
along weight input 105 in avertical column and each lane feeds to a corresponding lane of vector
engine 111. In some embodiments, each laneisavertical column of sub-circuits that include
multiply, add and/or accumulate, and shift functionality. In some embodiments, matrix processor
107 includes amatrix of tiles and each tile is amatrix of computation units. For example, a 96 x 96
matrix processor may include amatrix of 6 x 6 tiles, where each tile includes 16 x 16 computation
units. In some embodiments, avertical lane is asingle column of tiles. In some embodiments, a
horizontal laneisasingle row of tiles. In various embodiments, the dimensions of the lane may be
configured dynamically and may be utilized for performing alignment operations on the input to
matrix processor 107, vector engine 111, and/or post-processing unit 115. In some embodiments,
the dynamic configuration is performed by or using control unit 101 and/or with using processor

instructions controlled by control unit 101.

[0032] In some embodiments, control unit 101 synchronizes the processing performed by
matrix processor 107, vector engine 111, and post-processing unit 115. For example, control unit
101 may send processor specific instructions to each of matrix processor 107, vector engine 111,
and post-processing unit 115. Control unit 101 may send matrix processor instructions to matrix
processor 107. A matrix processor instruction may be acomputational array instruction that
instructs a computational array to perform an arithmetic operation, such as a dot-product or dot-
product component, using specified operands from data input 103 and/or weight input 105. Control
unit 101 may send vector processor instructions to vector engine 111. For example, avector
processor instruction may include a single processor instruction with aplurality of component
instructions to be executed together by the vector computational unit. Control unit 101 may send
post-processing instructions to post-processing unit 115. In various embodiments, control unit 101
synchronizes datathat is fed to matrix processor 107 from data input 103 and weight input 105, to
vector engine 111from matrix processor 107, and to post-processing unit 115 from vector engine

111. In some embodiments, control unit 101 synchronizes the data between different components

10

WO 2019/022872 PCT/US2018/038618

of microprocessor system 100 including between data input 103, weight input 105, matrix
processor 107, vector engine 111, and/or post-processing unit 115 by utilizing processor specific
memory, queue, and/or dequeue operations. In some embodiments, data and instruction
synchronization is performed by control unit 101. In some embodiments, data and instruction
synchronization is performed by control unit 101 that includes one or more sequencers to
synchronize processing between matrix processor 107, vector engine 111, and/or post-processing

unit 115.

[0033] In some embodiments, matrix processor 107 and vector engine 111 are utilized for
processing convolution layers. In some embodiments, vector engine 111isutilized for performing
non-linear functions such as an activation function on the output of matrix processor 107. For
example, matrix processor 107 may be used to calculate a dot-product and vector engine 111 may
be used to perform an activation function such as arectified linear unit (ReLU) or sigmoid
function. In some embodiments, post-processing unit 115 isutilized for performing pooling
operations. In some embodiments, post-processing unit 115 isutilized for formatting and storing

the processed datato memory and may be utilized for synchronizing memory writing latency.

[0034] Figure 2 isablock diagram illustrating an embodiment of amicroprocessor system
for performing machine learning processing. Inthe example shown, microprocessor system 200
includes control unit 201, vector input 203, vector engine input queue 207, vector engine 211, and
post-processing unit 215. Vector engine input queue 207 includes aplurality of computation units
including computation units 209 and 221-229 and vector engine 2 11lincludes aplurality of
processing elements including processing elements 213 and 231. Vector input 203 is an input
module for feeding data into vector engine input queue 207. In some embodiments, vector input
203 includes an input data formatter, a cache or buffer, and/or alogic circuit for preparing data for
vector engine input queue 207. For example, vector input 203 may prepare N operands from atwo-
dimensional array to be processed by vector engine 211 utilizing vector engine input queue 207 as a
first-in-first-out (FIFO) input queue. In some embodiments, vector input 203 is coupled to memory

(not shown in Figure 2), such as static random access memory (SRAM) for retrieving data.

[0035] In various embodiments, control unit 201, vector input 203, vector engine input
gueue 207, vector engine 211, and post-processing unit 215 are, respectively, control unit 101, data
input 103, matrix processor 107, vector engine 111, and post-processing unit 115 of Figure 1. For
example, matrix processor 107 of Figure 1 may beused to implement an input queue such as vector
engine input queue 207 by receiving data from data input 103 of Figure 1 and repeatedly shifting

each vector of input towards vector engine 111 of Figure 1.

11

WO 2019/022872 PCT/US2018/038618

[0036] In some embodiments, vector engine input queue 207 is acomputational array unit
and includes amatrix of computation units whose columns are first-in-first-out (FIFO) queues. In
the example shown, vector engine input queue 207 is an input queue for vector input 203 and
functions as awide first-in-first-out (FIFO) queue to feed multiple data elements from vector input
203 to vector engine 211. For example, computation units 221-229 make up avertical column of
computation units that work together as a single FIFO queue. In various embodiments, vector
engine input queue 207 includes multiple FIFO queues made up of vertical columns of computation
units similar to computation units 221-229. For example, in an embodiment where vector engine
input gqueue 207 is 96 computation units wide, vector engine input queue 207 has 96 vertical
columns of computation units that correspond to 96 FIFO queues. Asafurther example, in an
embodiment where vector engine input queue 207 is 96 computation units long, vector engine input

gueue 207 has FIFO gueues that are 96 stages long.

[0037] In various embodiments, each first-in-first-out (FIFO) queue works in parallel and
shifts input received from the vector input 203 along the FIFO queue to vector engine 211. The
first row of computation units of vector engine input gqueue 207, which includes computation unit
221, is connected to the vector input 203. The first row of computation units is configured to
receive an entire row of data from vector input 203 in parallel. The last row of computation units
of vector engine input queue 207 is connected to the row of processing elements of vector engine
211. For example, the last row of computation units of vector engine input queue 207 includes
computation units 229 and 209. Computation unit 209 is connected to processing element 213 and
computation unit 229 is connected to processing element 231 Processing elements 213 and 231
are configured to receive the data output elements of computation units 209 and 229, respectively.
The processing elements of vector engine 2 11receive an entirerow of data from the last row of
computation units of vector engine input queue 207 in parallel. In various embodiments, when the
last row of computation units of vector engine input queue 207 has data available to dequeue, a
dequeue ready signal is received by vector engine 211to indicate the vector engine input queue 207

is ready to receive aqueue operation.

[0038] In the example described, the data from the first row of computation units is shifted
down the column to the next row of computation units in the logical direction towards vector
engine 211. For example, an input corresponding to adata element of vector input 203 isreceived
as an operand at computation unit 22 1 and shifted from computation unit 221to computation unit
222, from computation unit 222 to computation unit 223, from computation unit 223 to

computation unit 224, and so forth, until an operand received a computation unit 221is

12

WO 2019/022872 PCT/US2018/038618

incrementally shifted from computation unit 221to computation unit 229 via the intermediate
computation units 222-228. In various embodiments, a data element pushed into the FIFO takes as
many shifts asthe FIFO is deep in computation units. For example, a FIFO queue with 96
computation units and 96 stages long requires 96 shifts to dequeue an inserted element. In various
embodiments, each stage of the FIFO can shift an operand in parallel with the other stages. For
example, while each intermediate computation unit in the FIFO queue shifts its operand to the next
computation unit, the first computation unit can retrieve the next data e ement from vector input
203 and the last computation unit can dequeue its data element to bereceived by the corresponding
processing element of vector engine 211. In the example described, each computation unit along
each row of computation units works in parallel to shift its corresponding data element originally

received from vector input 203 to vector engine 211.

[0039] In some embodiments, vector engine input queue 207 is coupled to vector input 203
and one dimension of the matrix of computation units matches the dimension of vector input 203.
For example, in an embodiment with vector input 203 having awidth of 96 bytes, vector engine
input gueue 207 has amatrix of computation units with awidth of at least 96 bytes. In some
embodiments, the width of vector input 203 and the corresponding width of the inputs to vector
engine input queue 207 are dynamically configurable. For example, vector input 203 can be
dynamically configured to 96 bytes or 96 x 2 bytes and the corresponding width of inputs to vector
engine input queue 207 are configurable to 96 bytes or 96 x 2 bytes, respectively. In some
embodiments, the configuration is performed using control unit 201 and/or processor instructions to

vector engine input queue 207.

[0040] In some embodiments, vector engine 211is avector computational unit that is
communicatively coupled to vector engine input queue 207. Vector engine 2 11includes aplurality
of processing elements including processing elements 213 and 231. In the figure shown, the small
squares inside vector engine 211 depict that vector engine 211includes aplurality of processing
elements arranged as avector. In some embodiments, the processing elements are arranged in a
vector in the same direction asvector input 203. In various embodiments, the data size of the
processing elements of vector engine 211isthe same size or larger than the data size of the
computation units of vector engine input queue 207. For example, in some embodiments,
computation unit 209 receives an operand 1byte in size and dequeues an output to processing
element 213 also having asize of 1byte. Processing element 213 receives the 1byte output from
computation cell 209 as an input 1byte in size. In various embodiments, the output of vector

engine 211isthe same size as the input to vector engine 211. In various embodiments, the output

13

WO 2019/022872 PCT/US2018/038618

of vector engine2 11is smaller in size as compared to the input to vector engine 211. For example,
vector engine 211 may receive up to 96 elements each 4 bytes in size and output 96 €lements each
lbytein size. In some embodiments, the communication channel from vector input 203 to vector
engine input queue 207 is 96 elements wide with each element 1byte in size and matches the

output size of vector engine 211 (96 elements wide with each element 1byte in size).

[0041] In some embodiments, the processing elements of vector engine 211, including
processing elements 213 and 231, each include an arithmetic logic unit (not shown) and are
described in further detail with respect to vector engine 111 of Figure 1. In some embodiments, the
processing elements of vector engine 211 are configured to receive data from vector engine input
gueue 207 and each of the processing elements can process the received portion of datain parallel.
Asone example of aprocessing element, processing elements 213 and 231 of vector engine 211
receive data from computation units 209 and 229, respectively, of vector engine input queue 207.

In various embodiments, vector engine 211 receives asingle vector processor instruction and in
turn each of the processing elements performs the processor instruction in parallel with the other
processing elements. In some embodiments, the processor instruction includes one or more
component instructions, such as aload, astore, and/or an arithmetic logic unit operation. In various

embodiments, ano-op operation may be used to replace a component instruction.

[0042] In the example shown, the dotted arrows between vector input 203 and vector engine
input gqueue 207, vector engine input queue 207 and vector engine 211, and vector engine 211 and
post-processing unit 215 depict a coupling between the respective pair of components that is
capable of sending multiple data elements. Asan example, the communication channel between
vector engine input queue 207 and vector engine 211 may be 96 x 32 bits wide and support
transferring 96 elements in parallel where each element is 32 bits in size. Asanother example, the
communication channel between vector engine 211 and post-processing unit 215 may be 96 x 1
byte wide and support transferring 96 elements in parallel where each element is 1byte in size. In
various embodiments, vector input 203 is coupled to amemory module (not shown in Figure 2) and
may receive input data from the memory module. In some embodiments, vector engine 211is
additionally coupled to amemory module (not shown in Figure 1) and may receive input data from
the memory module in addition or alternatively to input from vector engine input queue 207. Inthe

various embodiments, amemory module istypically a static random access memory (SRAM).

[0043] In some embodiments, one or more computation units of vector engine input queue
207 may be grouped together into avertical column such that vector engine input queue 207 has

multiple vertical column lanes. In the example shown in Figure 2, the lanes are aligned along the

14

WO 2019/022872 PCT/US2018/038618

same vertical columns as the first-in-first-out (FIFO) queues described above and each lane feeds to
acorresponding lane of vector engine 211. In some embodiments, each lane isavertical column of
sub-circuits that include multiply, add and/or accumulate, and shift functionality. In some
embodiments, avertical lane is asingle column of computation units. In some embodiments, a
vertical laneisagroup of multiple columns of adjacent computation units. In various
embodiments, the dimensions of the lane may be configured dynamically and may be utilized for
performing alignment operations on the input to vector engine input queue 207, vector engine 211,
and/or post-processing unit 215. In some embodiments, the dynamic configuration is performed by

or using control unit 201 and/or with using processor instructions controlled by control unit 201.

[0044] In some embodiments, control unit 201 synchronizes the processing performed by
vector engine input queue 207, vector engine 211, and/or post-processing unit 215. For example,
control unit 201 may send processor specific instructions to each of vector engine input queue 207,
vector engine 211, and post-processing unit 215. Control unit 201 may send vector engine input
gueue instructions to vector engine input queue 207. In some embodiments, vector engine input
gueue instructions are a subset of the matrix processor instructions that matrix processor 107 of
Figure lis capable of responding to and is described further with respect to Figure 1. A vector
engine input queue instruction may be a computational array instruction that instructs a
computational array to perform aload operation, a shift operation, or other appropriate instruction
for interfacing with an input queue. Control unit 201 may send vector processor instructions to
vector engine 211. For example, avector processor instruction may include a single processor
instruction with aplurality of component instructions to be executed together by the vector
computational unit. Control unit 201 may send post-processing instructions to post-processing unit
215. Invarious embodiments, control unit 201 synchronizes data that is fed to vector engine input
gueue 207 from vector input 203, to vector engine 211 from vector engine input queue 207, and to
post-processing unit 215 from vector engine 211. In some embodiments, control unit 201
synchronizes the data between different components vector input 203, vector engine input queue
207, vector engine 211, and/or post-processing unit 215 by utilizing processor specific memory,
gueue, and/or dequeue operations. The functionality of control unit 201 is described in further

detail with respect to control unit 101 of Figure 1.

[0045] In some embodiments, control unit 201isutilized to configure the size and number
of data elements to bereceived by vector engine input queue 207, vector engine 2 11, and/or post-
processing unit 215. For example, in some embodiments, control unit 201 may be utilized to

configure the input to vector engine input queue 207 as 96 elements each of size 1 byte or other

15

WO 2019/022872 PCT/US2018/038618

appropriate variations such as 48 elements each of size 2 bytes, 96 elements each of size 2 bytes,
192 elements each of size 4 bits, etc. In some embodiments, vector engine input queue 207 is able
to output a data element with asize larger than it can receive by performing a sequence of load and
logical shift operations. For example, a4-byte input data element isloaded into vector engine input
gueue 207 by reading four sequential 1-byte portions of the 4-byte input data element and logically
shifting each byte to the appropriate bit fields. Asanother example, in some embodiments, control
unit 201 may be utilized to configure the input to vector engine 211 as 96 elements each of size 4
bytes, or other appropriate variations such as 96 elements each of size 1byte, 48 elements each of

size 2 bytes, etc.

[0046] In various embodiments, post-processing unit 215 isutilized to perform post-
processing of output from vector engine 211. The post-processing functionality of post-processing

unit 215 is described in further detail with respect to post-processing unit 115 of Figure 1.

[0047] Figure 3isablock diagram illustrating an embodiment of amicroprocessor system
for performing machine learning processing. Inthe example shown, microprocessor system 300
includes control unit 301, memory 307, vector engine 311, and post-processing unit 315. In
various embodiments, memory 307 istypicaly astatic random access memory (SRAM). In
various embodiments, post-processing unit 315 received input data from vector engine 311andis
utilized to perform post-processing of output from vector engine 311. The post-processing
functionality of post-processing unit 315 is described in further detail with respect to post-

processing unit 115 of Figure 1.

[0048] The block diagram of Figure 3 depicts a system architecture embodiment where
vector engine 311is coupled to memory 307 and may retrieve data directly from memory 307. In
various embodiments, the size of the communication channel between memory 307 and vector
engine 311may be configured to transfer multiple data elements in parallel from memory 307 to
vector engine 311. For example, in an embodiment where vector engine 311is capable of
receiving 96 elements each of 32 bits in size in parallel, the size of the communication channel
between memory 307 and vector engine 311isconfigured to transfer 96 elements each of 32 bits in
size from memory 307 to vector engine 311in paralel. In some embodiments, memory 307
includes adata formatter (not shown) which may include a data cache or buffer and/or alogic
circuit for formatting data from memory prior to transfer to vector engine 311. For example, data
elements of size 1byte may be stored on word boundaries in memory 307 and the data formatter is
utilized to format and/or mask the data to byte boundaries. In various embodiments, control unit

301, vector engine 311, and post-processing unit 315 are, respectively, control unit 101, vector

16

WO 2019/022872 PCT/US2018/038618

engine 111, and post-processing unit 115 of Figure 1. In various embodiments, vector engine 311
may be further coupled to amatrix processor (not shown) as described with respect to matrix

processor 107 of Figure 1

[0049] In some embodiments, vector engine 311is avector computational unit that is
communicatively coupled to memory 307. Vector engine 311includes aplurality of processing
elements including processing element 313. In the figure shown, the small squares inside vector
engine 311 depict that vector engine 311includes aplurality of processing elements arranged as a
vector. In some embodiments, the processing elements of vector engine 311, including processing
element 313, each include an arithmetic logic unit (not shown). The processing elements of vector
engine 311 are configured to receive data from memory 307 and each of the processing elements
can process the received portion of datain parallel. In various embodiments, vector engine 311
receives a single vector processor instruction and in turn each of the processing elements performs
the processor instruction in parallel with the other processing elements. In some embodiments, the
processor instruction includes one or more component instructions, such as aload, a store, and/or
an arithmetic logic unit operation. The functionality of vector engine 311is described in further

detail with respect to vector engine 111 and 2 11 of Figures 1and 2, respectively.

[0050] In some embodiments, control unit 301 synchronizes the processing performed by
vector engine 311 and post-processing unit 315, and access to memory 307. For example, control
unit 301 may send processor specific instructions to each of vector engine 311 and post-processing
unit 315. In some embodiments, control unit 301 may send vector processor instructions to vector
engine 311. For example, avector processor instruction may include a single processor instruction
with aplurality of component instructions to be executed together by the vector computational unit.
In some embodiments, control unit 301 may send post-processing instructions to post-processing
unit 315. In various embodiments, control unit 301 synchronizes datathat isreceived by vector
engine 311from memory 307 and received by post-processing unit 315 from vector engine 311. In
some embodiments, control unit 301 synchronizes the data between different components vector
engine 311 and/or post-processing unit 315 by utilizing vector engine and/or post-processing unit
processor specific operations. The functionality of control unit 301 is described in further detail

with respect to control unit 101 of Figure 1.

[0051] In some embodiments, control unit 301 isutilized to configure the size and number
of data elements to bereceived by vector engine 311 and/or post-processing unit 315. For example,
in some embodiments, control unit 301 may beutilized to configure vector engine 311toreceive

96 data elements each of size 4 bytes, or other appropriate variations such as 96 elements each of

17

WO 2019/022872 PCT/US2018/038618

size 1byte, 48 elements each of size 2 bytes, etc. As described further with respect to Figures 1
and 2, the dotted arrows between vector engine 311 and post-processing unit 315 depict a coupling
between the respective pair of components that is capable of sending multiple data elements. Asan
example, the communication channel between vector engine 311 and post-processing unit 315 may
be 96 x 1byte wide and support transferring 96 elements in parallel where each element is 1byte in

size.

[0052] Figure 4A isablock diagram illustrating an embodiment of avector computational
unit for performing machine learning processing. In the example shown, microprocessor system
400 includes vector computational unit 401, input bus 411, and output bus 431. Input to vector
computational unit 401 arrives from input bus 411. Output from vector computational unit 401is
written to output bus 431. In some embodiments, input bus 411 and output bus 431 are a single bus
that includes the functionality of both input bus 411 and output bus 431. In various embodiments,
input bus 4 11 and output bus 431 are wide data buses that allow the transfer of multiple data
elements in parallel. For example, input bus 411 may be 96 x 32 bits wide and output bus 431 may
be 96 bytes wide to accommodate the parallel processing functionality of computational unit 401.
In some embodiments, vector computational unit 401 receives vector computational unit
instructions via input bus 411. In some embodiments, vector computational unit 401 receives
vector computational unit instructions via acommunication channel other than input bus 4 11 such

as an instruction bus (not shown).

[0053] In various embodiments, vector computational unit 401 isvector engine 111, 211,
and/or 311 of Figures 1, 2, and 3, respectively. In some embodiments, input bus 411is connected
to matrix processor 107 of Figure 1, vector engine input queue 207 of Figure 2, and/or memory 307
of Figure 3. In some embodiments, output bus 431is connected to post-processing units 115, 215,
and/or 315 of Figures 1, 2, and 3, respectively. Invarious embodiments, vector computational unit
401 isbi-directionally coupled to acontrol unit (not shown) of microprocessor system 400 externa
to vector computational unit 401, such as control units 101, 201, and/or 301 of Figures 1, 2, and 3,
respectively. In various embodiments, the control unit of microprocessor system 400 sends vector
computational unit instructions to vector computational unit 401. In some embodiments, the
control unit of microprocessor system 400 includes one or more sequencers for synchronizing

instructions and datato vector computational unit 401

[0054] In the example shown, vector computational unit 401includes registers 421, vector
engine control logic 423, input buffer 425, arithmetic logic units (ALUs) 427, and output buffer
429. Input data from input bus 4 11isreceived by input buffer 425 and output written to output bus

18

WO 2019/022872 PCT/US2018/038618

431 iswritten from output buffer 429. In some embodiments, input buffer 425 and output buffer
429 are data buffers or caches and provide memory synchronization functionality. For example, in
some embodiments, input reads from input bus 4 11 and/or output writes to output bus 431 have an
unpredictable latency that can be smoothed out by utilizing input buffer 425 to receive input data
and output buffer 429 for storing calculated results. A s another example, output bus 431 may not
be available when output from ALUs 427 isready for writing. In some embodiments, output buffer
429 allows ALUs 427 to continue processing pending data until output bus 431is available for
writing the results stored at output buffer 429. In various embodiments, input bus 411 and output
bus 431 are communication channels controlled by acontrol unit (not shown) of microprocessor
system 400.

[0055] As described above, in various embodiments, avector computational unit includes a
plurality of processing elements. In some embodiments, each processing element includes
individual functionality for loading data, storing data, and performing arithmetic logic unit
operations. The individual processing elements are not depicted in the block diagram of Figure 4A.
In various embodiments, arithmetic logic units (ALUs) 427 include the corresponding arithmetic
logic unit (ALU) of each processing unit. Similarly, input buffer 425 and output buffer 429 include
corresponding input buffers and output buffers for each processing unit. In various embodiments,
ALUs 427 include ALU logic for processing every element of an input vector to vector
computational unit 401in paralel. In some embodiments, ALUs 427 include logic for quantizing
the ALU result. Invarious embodiments, the ALU logic, for example, logic for performing anon-

linear function and quantization, can be performed in response to asingle processor instruction.

[0056] In various embodiments, registers 42 1includes registers for implementing the
functionality of vector computational unit 401. For example, registers 421 may beused to store
operands for performing vector computational unit instructions, to implement bit masks, and to
reference vector elements using different memory-sized register aliases, among other appropriate
functionality. In some embodiments, registers 421 include arithmetic instruction vector registers;
mask registers; registers for performing arithmetic operations such as add, subtract, and floating
point operations, and/or registers for aliasing vector elements. In some embodiments, the registers

used for aliasing vector elements are also utilized for performing arithmetic operations.

[0057] In some embodiments, registers 421 include arithmetic instruction vector registers.
For example, registers may be used as operands for load operations, store operations, and
arithmetic logic unit (ALU) operations. As another example, in some embodiments, an ALU

operation may take as arguments up to four vector registers, three as source registers and one as a

19

WO 2019/022872 PCT/US2018/038618

destination register. In various embodiments, the vector registers used by processor operations are
aliased to different vector elements based on the size of the vector element. For example, in some
embodiments, adifferent set of vector registers are available for operating on 8-bit, 16-bit, 32-bit,
and/or floating point values. In some embodiments, the set of vector registers for 32-bit values is
also used for floating point values. In various embodiments, 32-bit vector registers are aliased to
16-hit vector registers and 8-bit vector registers. For example, one 32-bit vector register is aiased
to two 16-bit vector registers and four 8-bit vector registers. Asanother example, avector
computational unit 401with eight 96 x 32-hit vector registers (registers RDO-RD7) isadiased to
sixteen 96 x 16-bit vector registers (registers RW0-RW15), and thirty-two 96 x 8-bit vector
registers (registers RBO-RB3 1). RDO is a96 x 32-bit vector register, RWOisa 96 x 16-hit vector
register, and RBO is a96 x 8-bit vector register. A further example of vector register aliasing is
depicted in Figure 4B.

[0058] In some embodiments, registers 42 1include one or more bit mask registers based on
the number of processing elements of vector computational unit 401. For example, avector
computational unit with 96 processing elements may include one or more 96-bit mask registers. In
various embodiments, amask register may be set by loading abit-mask from memory. A mask
register may beused to store the results of logical operations performed on input datato vector

computational unit 401

[0059] In some embodiments, registers 42 1include registers for performing arithmetic
operations such as add, subtract, and floating point operations. For example, in some
embodiments, vector computational unit 401includes registers for storing carry-out bits for vector

add and subtract instructions and status bits corresponding to floating point instructions.

[0060] In some embodiments, vector computational unit 401 includes an instruction buffer
(not shown) for storing a sequence of vector computational unit instructions. In some
embodiments, the instruction buffer is acommand queue. In various embodiments, the instruction
buffer includes one or more pointers to reference the current and/or last instruction to be performed.
In various embodiments, the instruction buffer acts as a cache of vector computational unit
instructions. For example, one or more vector computational unit instructions are loaded into an
instruction buffer of vector computational unit 401 and cached until the instructions can be
executed. Asinstructions are executed and no longer needed, new instructions may be loaded into
the instruction buffer. In some embodiments, the vector computational unit instructions are
received from an external instruction command gueue via a control logic (not shown) of

microprocessor system 400.

20

WO 2019/022872 PCT/US2018/038618

[0061] In some embodiments, vector computational unit 40 1includes avector engine
control logic 423. Vector engine control logic 423 isutilized to implement the functionality of the
vector computational unit 401 including fetching vector computational unit instructions, decoding
the instructions, and/or executing the instructions. In various embodiments, the vector engine
control logic 423 includes logic for reading, writing, masking, and/or aliasing the data via input
buffer 425, output buffer 429, and registers 421. In some embodiments, vector computational unit
401 receives a dequeue ready signal and determines using vector engine control logic 423 that data
is available via input bus 411. For example, vector engine control logic 423 may dequeue data
from an input first-in-first-out queue (not shown) attached to input bus 411 on receipt of a dequeue
ready signal.

[0062] Figure 4B isatable illustrating an exemplary aiasing of vector registers. Table 450
illustrates the aliasing of vector registers for avector computational unit embodiment with eight 96
x 32-bit vector registers (registers RDO-RD7) aliased to sixteen 96 x 16-hit vector registers
(registers RW0O-RW15), and thirty-two 96 x 8-bit vector registers (registers RBO-RB3 1). In some
embodiments, the vector registers in Table 450 are the vector registers of registers 421 of vector
computational unit 401 of Figure 4A. Inthe example shown, row 451 includes columns for the
bytes 0, 1, 2, and 3 that are aliased to the respective registers listed in the rows below it. Rows 453,
463, and 473 correspond to 96 x 32-bit vector registers RDO, RDI, and RD7. Rows 455, 465, and
475 correspond to 96 x 16-bit vector registers RW0-3 and RW14-15. Rows 457, 467, and 477
correspond to 96 x 8-bit vector registers RBO-7 and RB28-31. In the example, bytes 0-3 are one of
the 96 lanes of avector computational unit such asvector engine 111, 211, and/or 311 of Figures 1,

2, and 3, respectively.

[0063] In the example shown, table 450 illustrates vector register aliasing for a single lane
of the 96 lanes of avector computational unit embodiment. The 96 x 32-bit vector register RDO
utilizes four bytes ordered from byte 0 to byte 3. The 96 x 16-bit vector registers RW0 and RW1
are aliased to 2 bytes each. Vector register RWO is aliased to byte 0 and byte 1and vector register
RW!1 is aliased to byte 2 and byte 3. The 96 x 8-hit vector registers RBO-RB3 are aliased to 1byte
each corresponding to bytes 0-3, respectively. Similarly, the 96 x 32-bit vector register RDI is
aliased to the 96 x 16-bit vector registers RW2 (bytes 0 and 1) and RW3 (bytes 2 and 3), and the 96
x 8-hit vector registers RB4-RB7 for bytes 0-3, respectively. Asanother example, the 96 x 32-bit
vector register RD7 is aliased to the 96 x 16-bit vector registers RW14 (bytes 0 and 1) and RW15
(bytes 2 and 3), and the 96 x 8-hit vector registers RB28-RB3 1 for bytes 0-3, respectively.

[0064] In various embodiments, vector computational unit instructions operate on all 96

21

WO 2019/022872 PCT/US2018/038618

lanes of avector register in parallel. For example, for each of the 96 lanes, vector register RBO
operates on byte 0, vector register RB5 operates on byte 1, vector register RW2 operates on bytes 0
and 1, vector register RW15 operates on bytes 2 and 3, and vector register RD7 operates on bytes
0-3 in paraldl.

[0065] Figure 5isaflow diagram illustrating an embodiment of aprocess for determining
processor instructions for amicroprocessor system. |n some embodiments, the process of Figure 5
converts a software program written with ahigh level programming language into a sequence of
computational array and vector computational unit instructions for amicroprocessor system with a
computational array and avector computational unit. In various embodiments, the microprocessor
system ismicroprocessor system 100 of Figure 1, acomputational array ismatrix processor 107 of
Figure 1, and avector computational unit isvector engine 111 of Figure 1. In various
embodiments, the process of Figure 5 is utilized to implement applications relying on machine
learning including applications that perform inference using a machine learning model such as self-

driving and driver-assisted automobiles.

[0066] At 501, adetermination is made on the processing to be performed and the subset of
processing to be assigned to different co-processing components such as acomputational array, a
vector computational unit, and/or apost-processing unit. In various embodiments, the processing is
assigned based on the functionality and efficiency of the different co-processing components. For
example, certain matrix-related operations are assigned to a computational array and operations
involving non-linear functions such as activation functions may be assigned to avector
computational unit. In some embodiments, pooling operations are assigned to a post-processing
unit. Asanother example, in some embodiments, a 501, a determination is made that a
convolution operation requires a dot-product operation and that the dot-product operation best
utilizes matrix processing performed by a computational array. In some embodiments, this
determination is performed by compiling amachine learning application to target the

microprocessor system described herein.

[0067] At 503, one or more matrix processor instructions are determined that correspond to
the processing determined and assigned at 501. For example, the dot-product operation determined
a 501 to be performed by amatrix processor isconverted to one or more matrix processer
instructions. In various embodiments, the matrix processor instructions are computational array
instructions. Asan example, the computational array instructions may require that one or more
datavectors are received from a data input component, such as datainput 103 of Figure 1, and one

or more weight vectors are received from a corresponding weight input component, such as weight

22

WO 2019/022872 PCT/US2018/038618

input 105 of Figure 1. Additional computational array instructions may include the multiply,
accumulate, and shift operations for processing a dot-product operation. For example, one or more
dot-product component operations may be used to calculate a dot-product result. In various
embodiments, the computational array instructions are directed to processing performed on
received input data by the corresponding computation units of the computational array. In some
embodiments, additional computational array instructions include instructions for preparing the

dot-product result for processing by the vector computational unit.

[0068] At 505, adetermination is made regarding the vector engine instructions to be
performed by the vector computational unit. For example, operations related to an activation
function determined at 501 to be performed by avector engine are converted to one or more vector
engine instructions. In various embodiments, the vector engine instructions are vector
computational unit instructions. A s an example, the vector computational unit instructions may
require that one or more datavectors are received from acomputational array, such as matrix
processor 107 of Figure 1. Additional vector computational unit instructions may include
operations for performing anon-linear activation function, such as arectified linear unit (ReLu)
function. In various embodiments, the vector computational unit instructions are directed to
processing performed on received input data by the corresponding processing elements of the
vector computational unit. In some embodiments, additional vector computational unit instructions
include instructions for preparing the result of the processing elements for post-processing by the

post-processing unit.

[0069] In various embodiments, each vector computational unit instruction is asingle
processor instruction that specifies aplurality of component instructions to be executed together by
the vector computational unit. The execution of the plurality of component instructions is
performed by the processing elements of the vector computational unit in parallel on different data
input elements in response to asingle vector computational unit instruction. For example, in some
embodiments, a single processor instruction includes three component instructions: a separate load,
arithmetic logic unit, and store instruction. The three component instructions are received and
executed by the vector computational unit. In some embodiments, the bundling of component
instructions into a single processing instruction is performed a 505. In various embodiments, the
order and selection of component instructions for bundling into avector computational unit

instruction is based on determined data hazards.

[0070] At 507, adetermination is made regarding the post-processing instructions to be

performed by the post-processing unit. For example, operations related to post-processing

23

WO 2019/022872 PCT/US2018/038618

functionality are determined at 501 to be performed by apost-processing unit and are converted to
one or more post-processing instructions. As an example, the post-processing instructions may
require that one or more data vectors are received from avector computational unit, such as vector
engine 111 of Figure 1. Additional post-processing instructions may include operations for
performing pooling layer functionality, such as amaxpooling. Invarious embodiments, post-
processing instructions may include instructions for configuring the pooling functionality such as
kernel size, stride, and/or spatial extent, among others. In some embodiments, additional post-
processing instructions include instructions for preparing and writing out the results of post-

processing.

[0071] At 509, the sequence corresponding to the execution of the collection of co-
processor instructions determined a 503, 505, and 507 is scheduled. For example, the relative
order and/or sequence of the respective processor instructions for the various co-processors, such as
computational array, avector computational unit, and/or apost-processing unit, is determined. In
some embodiments, the sequence depends on the interaction and dependencies between the co-
processors. For example, the input to avector computational unit may depend on the availability of
output results from a computational array. In various embodiments, dependencies including data
hazards are determined and accounted for. For example, in various embodiments, vector
computational unit instructions include aplurality of component instructions and can be executed
such that multiple vector computational unit instructions are executed in parallel. Data hazards
based on unavailable data resources are determined and accounted for. For example, no-ops may
beinserted into the component instructions of avector computational unit instruction to allow a
load operation to complete before an arithmetic logic unit operation that depends on the completion
of the load operation isperformed. In some embodiments, the bundling of component instructions
into a single vector computational unit instruction is determined at 509. In some embodiments,
some or al of the instruction scheduling, such asthe ordering of co-processor instructions, is
performed at 503 and 505 for a matrix processor and vector engine, respectively. For example, in
some embodiments, the bundling of component instructions for each single vector computational

unit instruction is determined at 505.

[0072] In some embodiments, acontrol unit and/or one or more sequencers of a
microprocessor system are utilized to initiate and coordinate the processing of the collection of co-
processor instructions. For example, the instruction sequence determined at 509 is utilized by a
control unit, such as control unit 101 of Figure 1, and/or by one or more segquencers to issue the

corresponding co-processor instructions to a computational array such as matrix processor 107 of

24

WO 2019/022872 PCT/US2018/038618

Figure 1, avector computational unit such asvector engine 111 of Figure 1, and/or apost-
processing unit such as post-processing unit 113 of Figure 1. In some embodiments, the
functionality of one or more sequencers is performed by acontrol unit. For example, in some
embodiments, the control unit includes an execute sequencer, memory access sequencers, network

sequencers, and/or vector engine sequencers, among others.

[0073] Figure 6A isaflow diagram illustrating an embodiment of aprocess for the running
execution of avector computational unit. The process of Figure 6A may be performed by avector
computational unit to process elements of avector in paralel. Invarious embodiments, avector
computational unit isvector engine 111, 211, 311, and/or vector computational unit 401 of Figures
1, 2, 3, and 4A, respectively. In some embodiments, the process of Figure 6A isinitiated by a
control unit such as control unit 101 of Figure 1. In various embodiments, the transition between
the steps of the process in Figure 6A isperformed by acontrol logic of the vector computational

unit such asvector engine control logic 423 of Figure 4A.

[0074] At 601, avector engine instruction isretrieved. In various embodiments, avector
engine instruction is avector computational unit instruction and specifies aplurality of component
instructions. For example, an instruction triad is asingle vector computational unit instruction
specifying up to three component instructions. An example instruction triad includes aload
operation, an arithmetic logic unit operation, and a store operation as asingle instruction. At 601,

once the instruction isretrieved, the process continues to both 603 and 605.

[0075] At 603, adetermination is made asto whether additiona instructions are pending.
For example, the next vector engine instruction may be available and ready for retrieving. As
another example, an instruction buffer for caching pending instructions may be empty and requires
retrieving and/or waiting for the next available instruction. In some embodiments, the availability
of additional instructions isbased on inspecting apointer referencing the last valid instruction in
the instruction buffer. Processing proceeds to step 609 in response to no available additional
instructions. Processing proceeds back to 601 in response to the availability of one or more

additional instructions.

[0076] At 605, the vector engine instruction retrieved at 601 is decoded. In various
embodiments, asingle vector engine instruction specifies one or more component instructions. In
various embodiments, the instruction and the component instructions are decoded. For example, an
instruction triad containing aload, an arithmetic logic unit, and a store component instruction is

decoded into the separate component operations. In some embodiments, the decoding determines

25

WO 2019/022872 PCT/US2018/038618

both the opcode and the arguments corresponding to the opcode for each component operation. As
one example, aload component instruction contains both the opcode corresponding to abyte vector
dequeue operation and the corresponding destination vector register to store the vector of bytes asa
result of the dequeue. As another example, an add component instruction contains both the opcode
corresponding to asigned 16-bit add operation and the corresponding vector registers for the source

and destination arguments.

[0077] At 607, the instruction decoded at 605 is executed. In some embodiments, asingle
vector engine instruction, which specifies multiple component instructions, is executed by the
processing elements of the vector computational unit. For example, avector of processing
elements executes the single vector engine instruction decoded at 605. In some embodiments, each
of the component instructions of the single vector engine instruction is further executed in parallel
by each of the processing elements. For example, for each processing element, aload instruction
and an arithmetic logic unit instruction may be executed in parallel. In some embodiments, aload
instruction, an arithmetic logic unit instruction, and a store instruction may be executed in parall€l.
For example, the following component operations are performed in parallel by each processing cell
of the vector engine: avector of input dataisloaded from an input accumulator into avector
register, afloating point multiply operation is performed on two different vector registers by an
arithmetic logic unit (ALU), and avector of 16-bit elements is stored from avector register to
memory. In various embodiments, once the processing elements have finished execution of

component instructions, the processing for the vector engine instruction is complete.

[0078] At 609, the vector computational unit waits for the next instruction. For example,
the vector computational unit waits until an instruction buffer for caching pending instructions
contains avalid instruction to be executed. A s another example, the vector computational unit
waits until the next instruction isreceived from memory and made available to the vector
computational unit. In some embodiments, the vector computational unit halts at 609 pending the
availability of an additional instruction. In various embodiments, the vector computational unit
may respond to interrupts at 609 while waiting for an additional instruction. In response to the

arrival of an additional instruction, processing continues back to 60 L

[0079] Figure 6B is aflow diagram illustrating an embodiment of a process for processing
vector data by avector computational unit. For example, Figure 6B illustrates the process applied
to vector datareceived by avector computational unit from an input source such as a computational
array and/or afirst-in-first-out (FIFO) queue. In some embodiments, the process of Figure 6B

illustrates the steps performed by avector computational unit for performing avector operation on

26

WO 2019/022872 PCT/US2018/038618

avector input to compute avector result. In various embodiments, the process of Figure 6B
utilizes aplurality of processing elements of avector computational unit to perform processing on
elements of avector in parallel. In various embodiments, vector computational unit isvector

engine 111, 211, 311, and/or vector computational unit 401 of Figures 1, 2, 3, and 4A, respectively.

[0080] At 651, aload operation is decoded and issued. In some embodiments, aload
operation is required to receive datainto avector computational unit. For example, in some
embodiments, a dequeue operation is aload operation that dequeues avector of data elements from
acomputational array to bereceived by the processing elements of the vector computational unit.

In various embodiments, the load operation may be one of multiple component instructions that
make up asingle vector computational unit instruction. The decoding of the load operation
determines the specific type of load operation and the appropriate operations. For example, various
load operations exist to load different sized vector elements into different specified vector registers.
At 651, the load operation is decoded and issued to initiate the receiving of input data such as the

dequeuing of avector of dataresults from afirst-in-first-out (FIFO) queue.

[0081] At 653, the vector computational unit receives input datain the form of avector as a
result of the load operation issued a 651. For example, the vector computation unit receives a
vector of input data elements from a computational array, such as matrix processor 107 of Figure 1,
afirst-in-first-out (FIFO) queue, such asvector engine input queue 207 of Figure 2, or other
appropriate data source. In some embodiments, the input datais stored in an input buffer. In some
embodiments, the input buffer utilizes a set of flip-flops and/or one or more accumulators to store
theinput data. An input buffer the size of the input vector may be utilized to store the input data so
that it can be loaded into one or more vector registers a step 6565.

[0082] At 655, vector datareceived at 653 is loaded into the appropriate registers. For
example, the vector dataread at 653 is loaded into the vector registers designated by the load
instruction. In some embodiments, register aliasing is used to determine how datais loaded into a
vector register. For example, data may be loaded into the same register's memory location but
aligned to byte, half-word, or word boundaries based on the instruction and aliased registers
utilized. In some embodiments, the loading of vector datainto vector registers utilizes abit mask,
such as avector hit mask, to determine which bytes of avector to load into which register memory
locations. For example, a 96-bit mask may be utilized to determine which elements of avector

register should receive data.

[0083] At 657, adetermination is made on whether additional dataisneeded. For example,

27

WO 2019/022872 PCT/US2018/038618

based on the current vector computational unit instruction, additional data may be needed before
performing an arithmetic logic unit (ALU) operation. In response to not needing additiona data,
processing continues to 661. Asan example, processing continues to 66 1in the event the current
vector computational unit instruction includes an ALU component operation (such as an add
operation) that isnot ano-op operation. In response to needing additional data, for example, aload
operation is pending and no ALU operation ispending, processing continues to 659. In some
embodiments, an instruction triad may replace an ALU operation with ano-op indicating that an

ALU operation should not be performed for the current instruction.

[0084] At 659, additional datais loaded into the vector computational unit for processing.
For example, additional input data, such as avector of input weights, may be loaded by reading
memory, receiving the result of amatrix processor, dequeuing afirst-in-first-out (FIFO) queue, or
other appropriate technique. In some embodiments, additional data may be loaded by reading a
memory such as a static random access memory (SRAM). In various embodiments, additional
components such as aread buffer may be utilized to synchronize the loading of data and/or to
account for read delays and latency. In various embodiments, the data loaded & 659 may be a

vector of input data, such as avector of weight inputs.

[0085] At 661, avector arithmetic logic unit (ALU) operation is performed. In various
embodiments, vector ALU operations include vector operations for add (signed and unsigned),
subtract (signed and unsigned), multiply, absolute value, and logical operators, among others.
Vector ALU operations may be performed on different operand sizes. Example operand sizes
include 8-bit, 16-bit, 32-bit, and floating point values. In some embodiments, the different operand
sizes are determined based on register aliasing and/or the opcode of the operation. For example, a
vector add operation on 8-bit operands utilizes 8-bit vector registers. Asexplained in more detail
with respect to Figures 4A and 4B, register aliasing allows the same memory location to be
referenced using different aliases. For example, a 32-bit block of memory can bereferenced as a
single 4-byte operand, two 2-byte operands, or four 1-byte operands depending on the desired
result. In various embodiments, each processing element of the vector computational unit performs
the same ALU operation (e.g., add, subtract, multiply, etc.) in parallel with the other processing
elements. In some embodiments, the output result is aquantized version of the ALU result. For
example, the output result is a quantized version that requires fewer bits to represent than the ALU
result. In some embodiments, the ALU result is calculated using aresult represented using fewer
bits than the input operands. For example, input operands may be 4-bytes each and an output result

may be 1-bytein size.

28

WO 2019/022872 PCT/US2018/038618

[0086] At 663, the vector result of the arithmetic logic unit (ALU) operation performed a
661 iswritten out of the vector computational unit. In some embodiments, the vector result is
written out utilizing an output buffer that allows processing to continue for the next ALU operation
in the event the output bus isnot available to receive data. In some embodiments, the vector output
result is transferred to a post-processing unit such as post-processing units 115, 215, and/or 315 of
Figures 1, 2, and 3, respectively. For example, the result of performing an ALU operationis
written to apost-processing unit for performing post-processing pooling operations. In some
embodiments, the output vector result iswritten to memory such as static random access memory
(SRAM). Invarious embodiments, the output is written out as avector of elements such as a 96-

element vector with each element having the size of 1byte.

[0087] Figure 7 isablock diagram illustrating an embodiment of an encoding format for a
vector computational unit instruction. In the example shown, vector computational unit instruction
710 depicts the encoding of multiple component instructions specified by a single instruction.
Vector computational unit instruction 740 further details the format of each of the multiple
component instructions specified by asingle instruction. Vector computational unit instruction 710
is an encoded instruction triad and includes load operation 711, arithmetic logic unit (ALU)
operation 713, and store operation 715. Vector computational unit instruction 740 includes fields:
opcode 741, register 743, opcode 751, registers 753, opcode configuration field 755, immediate
field 757, opcode 761, and register 763. The fields for component instructions (corresponding to a
load operation, ALU operation, and store operation) depicted by vector computational unit
instruction 710 map to vector computational unit instruction 740. Vector computational unit
instruction 740 includes an encoded |oad operation (opcode 741 and register 743), arithmetic logic
unit operation (opcode 751, registers 753, opcade configuration field 755, and immediate field
757), and store operation (opcode 761 and register 763).

[0088] In some embodiments, avector computational unit instruction is an instruction triad
specifying three component instructions. For example, aload operation, arithmetic logic unit
(ALU) operation, and store operation may bebundled into a single instruction using a 128-hit
format. Invarious embodiments, alarger or smaller bit format may beutilized to bundle the three
component instructions as appropriate. In some embodiments, load and store operations are
encoded into 13 bits and ALU operations are encoded into 64 bits. In various embodiments, any
remaining bits not used by the bundled load, store, and ALU operations are padding bits. In some
embodiments, opcodes are encoded into 8 bits, registers are encoded into 5 bits, and immediate

fields are encoded into 32 bits. In various embodiments, different length encodings may be utilized

29

WO 2019/022872 PCT/US2018/038618

as appropriate and are based on the instruction size, number of supported vector operations, number
of registers, vector size, and/or other appropriate factors. In some scenarios, ano-op operation is

used when one or more of the component instructions are not utilized.

[0089] In the example shown, the encoded load operation of vector computational unit
instruction 740 includes opcode 741 and register 743. Opcode 741 corresponds to avector load
operation and register 743 isthe corresponding destination vector register for the load operation.
For example, opcode 74 1 may be used to store the opcode for a dequeue operation that |oads data
and register 743 is the destination register for storing the loaded data. In various embodiments, the
load operation is used to load avector of input datainto avector register for processing by avector
computational unit. In some embodiments, opcode 741 is an 8-bit field and register 743 is a 5-bit
field.

[0090] In the example shown, the encoded store operation of vector computational unit
instruction 740 includes opcode 761 and register 763. Opcode 761 corresponds to avector store
operation and register 763 is the corresponding source vector register for which the store operation
should read avector of datafrom. For example, opcode 76 1 may be used to store the opcode for a
store operation that stores data from register 763 to external memory such as static random access
memory (SRAM). In some embodiments, the start address of the memory used for storing is
maintained by an external sequencer or control unit using awrite pointer to reference a memory
location. In some embodiments, the store operation isused towrite avector of datato an output

databus. In some embodiments, opcode 761 is an 8-hit field and register 763 is a 5-hit field.

[0091] In the example shown, the encoded arithmetic logic unit (ALU) operation includes
opcode 751, registers 753, opcode configuration field 755, and immediate field 757. Opcode 751 is
used to encode an ALU opcode. For example, ALU opcodes may include opcodes that correspond
to vector operations for add (signed and unsigned), subtract (signed and unsigned), multiply,
absolute value, and logical operators, among others. Depending on the vector ALU operation, the
operation may utilize fields: registers 753, opcode configuration field 755, and immediate field 757.
In some embodiments, registers 753 specifies up to four vector registers including three source
registers and one destination register. In some embodiments, registers 753 is a 20-bit field and

utilizes 5 bits for each register.

[0092] In some embodiments, an encoded arithmetic logic unit (ALU) operation includes
opcode configuration field 755 that is utilized by certain ALU operations. In some embodiments,

opcode configuration field 755 is a5-hit field and includes aregister size field (2-bits), amask hit

30

WO 2019/022872 PCT/US2018/038618

(1-bit), and an immediate valid bit (1-bit). For example, in some scenarios, the value stored in the
register size field (2-hits) may be used to specify the size of the registers (e.g., 8-bits, 16-hits, or 32-
bits). Asadditional examples, amask bit (1-bit) may be utilized to process immediate field 757 as
ahit mask and an immediate valid bit (1-bit) may be utilized to identify the validity of immediate
field 757. In various embodiments, immediate field 757 is a 32-bit field that is utilized for ALU
operations that require an immediate field. For example, avector move operation may be

configured to move a 32-bit value from immediate field 757 to a destination vector register.

[0093] In some embodiments, avector computational unit supports avector mask move
instruction (not shown) to load avector bit mask into avector mask register. In some
embodiments, avector mask move instruction includes a corresponding opcode field, a destination
register field, and an immediate field. Asan example, the vector mask move loads avector bit
mask stored in the immediate field to the vector mask register. In some embodiments, the size of
the vectors (e.g., 96 elements wide) supported by the vector computational unit requires alarge
enough immediate field (e.g., 96-hits) to store the bit mask. In some embodiments, the vector mask
move instruction is not restricted to the encoding formats of vector computational unit instructions
710 and 740. For example, based on the size of the immediate field, the vector mask move may not

be bundled with other component instructions.

[0094] In various embodiments, the component instructions of vector computational unit
instructions are bundled together using the process of Figure 5. In some embodiments, the
encoding format of Figure 7 is utilized by avector computational unit such asvector engine 111,
211, 311, and/or vector computational unit 401 of Figures 1, 2, 3, and 4A, respectively. In some
embodiments, avector computational unit instruction isissued to avector computational unit by a

seguencer of amicroprocessor system or control unit containing a sequencer.

[0095] Figure 8isaflow diagram illustrating an embodiment of aprocess for performing a
single vector computational unit instruction by avector computational unit. The process of Figure
8 may be performed by avector computational unit on elements of avector in paralel utilizing the
processing elements of avector computational unit. In some embodiments, the process of Figure 8
is performed by avector computational unit such asvector engine 111, 211, 311, and/or vector

computational unit 401 of Figures 1, 2, 3, and 4A, respectively.

[0096] At 801, avector computational unit instruction is fetched. In some embodiments,
the instruction isfetched from an instruction buffer and/or command queue. In various

embodiments, the instruction buffer includes one or more pointers to reference the current

31

WO 2019/022872 PCT/US2018/038618

instruction to be performed. In various embodiments, the instruction buffer acts as acache of

vector computational unit instructions.

[0097] At 821, the vector computational unit instruction is decoded. For example, avector
computational unit instruction that is an instruction triad is decoded into its three component
instructions. In various embodiments, the arguments and fields utilized by each component
instruction are decoded. For example, vector registers specified by aregisters field, such as

registers 753 of Figure 7, are decoded into source and destination registers.

[0098] At 831, the component instructions are issued. In some embodiments, the issuing of
component instructions includes determining whether aresource and/or data hazards are present.

In the event hazards are present, in some embodiments, the vector computational unit waits for the

hazard to beresolved. For example, in the event of aresource hazard caused by aload operation in
the previous clock cycle, the vector computational unit waits one or more clock cycles for the load

to complete and for the resource to be available.

[0099] In some embodiments, the multiple component instructions are issued together and
executed in parallel. For example, the load operation, arithmetic logic unit (ALU) operation, and
store operation of an instruction triad are executed together and during the same clock cycle. In the
scenario where the component instructions are executed together, each of the steps corresponding
to executing aload operation (step 845), an ALU operation (step 855), and a store operation (step
865) along with corresponding no-op alternatives (steps 843, 854, and 863) are initiated in the same

clock cycle and execution proceeds in paralléel.

[00100] In some embodiments, the different component instructions are executed with

staggered starts. For example, in some embodiments, the load operation is executed first, followed
by the arithmetic logic unit (ALU) operation, and then the store operation. In a staggered scenario,
the ALU operation of afirst vector computational unit instruction may execute in parallel with the

load operation of the next vector computational unit instruction.

[00101] In various embodiments, different operations, including different arithmetic logic
unit (ALU) operations, take one or more clock cycles to complete and there isno guarantee that the
different operations complete by the end of the same clock cycle. In some embodiments, one or
more of the fetch (801), decode (step 821), and issue (step 831) steps may be performed during the

same instruction cycle.

[00102] At 841, adetermination is made on whether the vector computational unit

32

WO 2019/022872 PCT/US2018/038618

instruction includes aload operation. For example, in some scenarios, aload operation may be
replaced with ano-op to indicate that no load operation should be performed. In response to ano-
op, processing continues to 843. In the event that aload operation exists, processing continues to
845.

[00103] At 843, ano-op isprocessed and no load operation is performed. For example, a
load instruction was not present in the instruction at 84 1 and instead the opcode for ano-op was
used.

[00104] At 845, aload operation is executed by the vector computational unit. For example,
a degueue operation to load an input vector from afirst-in-first-out queue, such as vector engine

input queue 207, is performed.

[00105] At 851, adetermination is made on whether the vector computational unit
instruction includes an arithmetic logic unit (ALU) operation. For example, in some scenarios, an
ALU operation may bereplaced with ano-op to indicate that no ALU operation should be
performed. In response to ano-op, processing continues to 853. In the event that an ALU

operation exists, processing continues to 855.

[00106] At 853, ano-op isprocessed and no arithmetic logic unit (ALU) operation is
performed. For example, an ALU instruction was not present in the instruction at 851 and instead

the opcode for ano-op was used.

[00107] At 855, an arithmetic logic unit (ALU) operation is executed by the vector
computational unit. For example, in response to avector add operation, the arithmetic logic unit of
avector computational unit performs avector add operation to add the contents of two source
vector registers and store the result in a destination vector register. In some embodiments, the
arithmetic logic unit of the vector computational unit is arithmetic logic units (ALUS) 427 of Figure
4A.

[00108] At 861, adetermination is made on whether the vector computational unit
instruction includes a store operation. For example, in some scenarios, a store operation may be
replaced with ano-op to indicate that no store operation should be performed. In response to ano-
op, processing continues to 863. In the event that a store operation exists, processing continues to
865.

[00109] At 863, ano-op isprocessed and no store operation is performed. For example, a

33

WO 2019/022872 PCT/US2018/038618

store instruction was not present in the instruction at 861 and instead the opcode for ano-op was
used.

[00110] At 865, astore operation is executed by the vector computational unit. For example

astore operation to store the vector datain avector register to memory is performed.

[00111] Figure 9isadiagram illustrating an exemplary instruction cycle of avector
computational unit. The process of Figure 9illustrates an example ordering and sequence of three
vector computational unit instructions performed in parallel but with staggered starts. In some
embodiments, the exemplary instruction cycle of Figure 9isutilized by vector engine 111, 2 11,
311, and/or vector computational unit 401 of Figures 1, 2, 3, and 4A, respectively. In the example
of Figure 9, the component instructions bundled as a single instruction are executed with staggered
starts such that a load operation is executed first, followed by an arithmetic logic unit (ALU)
operation, and then a store operation. In some embodiments, sequential vector computational unit
instructions are pipelined but the component instructions are executed in parallel and do not follow

the staggered starts depicted in Figure 9.

[00112] In the example shown, afirst instruction cycle 910 includes fetch step 911, a decode
step 921, an issue step 931, aload execution step 941, an arithmetic logic unit (ALU) execution
step 951, and a store execution step 96 1 corresponding to the first vector computational unit
instruction. A second instruction cycle 920 includes fetch step 923, a decode step 933, an issue
step 943, aload execution step 953, an arithmetic logic unit (ALU) execution step 963, and a store
execution step 973 corresponding to the second vector computational unit instruction. A third
instruction cycle 930 includes fetch step 935, a decode step 945, an issue step 955, aload execution
step 965, an arithmetic logic unit (ALU) execution step 975, and a store execution step 985
corresponding to the third vector computational unit instruction. In some embodiments, the dotted
vertical lines are clock cycle boundaries. In various embodiments, the steps within the same clock

cycle boundaries are started during the same clock cycle.

[00113] In some embodiments, the start of instruction cycles are staggered by one stage. For
example, first instruction cycle 910 is one stage ahead in processing compared to second instruction
cycle 920, and two stages ahead of third instruction cycle 930. During any given clock cycle,
different vector computational unit instructions can be utilizing the hardware resources associated
with the different stages. fetch, decode, issue, load execution, arithmetic logic unit (ALU)
execution, and store execution. As an example, issue stage 931, decode stage 933, and fetch stage

935 of first, second, and third instruction cycles 910, 920, and 930, respectively, execute during the

34

WO 2019/022872 PCT/US2018/038618

same clock cycle. Asanother example, store execution step 961, arithmetic logic unit (ALU)
execution step 963, and load execution step 965 of first, second, and third instruction cycles 910,

920, and 930, respectively, execute during the same clock cycle.

[00114] In some embodiments, the instruction cycle of avector computational unit achieves
athroughput of one vector computational unit instruction per clock cycle. In some embodiments,
the fetch, decode, and/or issue steps are compressed into asingle clock cycle. For example, in
some embodiments, an instruction buffer isutilized to minimize fetch times and a fetch and decode
step are performed together. In some embodiments, each stage of the instruction cycle may take
one or more clock cycles to complete. In some embodiments, the stages are themselves pipelined.
For example, in the event an execution step takes more than one cycle to complete, an execution
step may be pipelined to complete over multiple clock cycles. In some embodiments, multiple
execution steps may be processed in paralel in apipelined manner and each execution step may
correspond to adifferent vector computational unit instruction. In some embodiments, fetch steps
911, 923, and 935 correspond to step 801 of Figure 8, decode steps 921, 933, and 945 correspond to
step 821 of Figure 8, issue steps 931, 943, and 955 correspond to step 831 of Figure 8, load
execution steps 941, 953 and 965 correspond to step 845 of Figure 8, arithmetic logic unit (ALU)
execution steps 951, 963, and 975 correspond to step 855 of Figure 8, and store execution steps
961, 973, and 985 correspond to step 865 of Figure 8.

[00115] In an dternative embodiment (not shown), the fetch, decode, and issues stages of an
instruction cycle are performed in the same order as Figure 9. In contrast with the exemplary
embodiment of Figure 9, the load, arithmetic logic unit (ALU), and store execution steps are
executed together and in parallel during the same clock cycle. For example, load execution step
941, ALU execution step 951, and store execution step 961 of the same vector computational unit

instruction are executed together.

[00116] Figure 10 isablock diagram illustrating an embodiment of a computation unit of a
computational array. Inthe example shown, computation unit 1000 includes input values weight
1002, data 1004, and Resultin 1006; signals ClearAcc signal 1008, Clock signal 1010,
ResultEnable signal 1012, ResultCapture signal 1014, and ShiftEn signal 1016; components
accumulator 1024, multiplexer 1026, shadow register 1028, multiplier 1030, and adder 1032; logic
1034, 1036, and 1038; and output value ResultOut 1050. In some embodiments, logic 1034, 1036,
and 1038 are AND gates. In some embodiments, additional signals are included as appropriate. In
various embodiments, the computation unit of Figure 10 isrepeated for each of the plurality of

computation units, such as computation unit 109, of a computation array such as matrix processor

35

WO 2019/022872 PCT/US2018/038618

107 of Figure 1. Computation unit 1000 may be utilized to implement computational operations in
paralel. Invarious embodiments, each computation unit of acomputational array performs
computations in parallel with the other computation units. In various embodiments, computation
unit 1000 is a sub-circuit of amatrix processor that includes the functionality for performing one or
more multiply, add, accumulate, and/or shift operations. For example, computation unit 1000 may
be a sub-circuit that includes the functionality for performing a dot-product operation. In various
embodiments, computation unit 1000 is computation unit 109 of Figure 1and/or computation units
209, and/or 221-229 of Figure 2.

[00117] In some embodiments, Clock signal 1010 is aclock signal received by computation
unit 1000. Invarious embodiments, each computation unit of the computational array receives the
same clock signal and the clock signal is utilized to synchronize the processing of each

computation unit with the other computation units.

[00118] In the example shown, multiplier 1030 receives and performs a multiplication
operation on the input values data 1004 and weight 1002. The output of multiplier 1030 is fed to
adder 1032. Adder 1032 receives and performs an addition on the output of multiplier 1030 and the
output of logic 1034. The output of adder 1032 isfed to accumulator 1024. In some embodiments,
input values data 1004 and weight 1002 are lines that cross computation units and feed the
corresponding data and/or weight to neighboring computation units. For example, in some
embodiments, data 1004 is fed to all computation units in the same column and weight 1002 is fed
to al computation units in the same row. In various embodiments, data 1004 and weight 1002
correspond to input elements fed to computation unit 1000 from a data input 103 and aweight input
105, respectively. Invarious embodiments, data 1004 and weight 1002 correspond to input
elements fed to computation unit 1000 from a data hardware data formatter and aweight hardware

data formatter, respectively.

[00119] In some embodiments, ClearAcc signal 1008 clears the contents of accumulator
1024. Asan example, accumulation operations can bereset by clearing accumulator 1024 and used
to accumulate the result of multiplier 1030. In some embodiments, ClearAcc signal 1008 isused to
clear accumulator 1024 for performing anew dot-product operation. For example, elements-wise
multiplications are performed by multiplier 1030 and the partial-dot-product results are added using
adder 1032 and accumulator 1024.

[00120] In various embodiments, accumulator 1024 is an accumulator capable of

accumulating the result of adder 1032 and indirectly the result of multiplier 1030. For example, in

36

WO 2019/022872 PCT/US2018/038618

some embodiments, accumulator 1024 is configured to accumulate the result of multiplier 1030
with the contents of accumulator 1024 based on the status of ClearAcc signal 1008. A s another
example, based on the status of ClearAcc signal 1008, the current result stored in accumulator 1024
may beignored by adder 1032. In the example shown, accumulator 1024 is a 32-hit wide
accumulator. Invarious embodiments, accumulator 1024 may be sized differently, e.g., 8-bits, 16-
bits, 64-bits, etc., as appropriate. In various embodiments, each accumulator of the plurality of
computation units of acomputational array isthe same size. In various embodiments, accumulator
1024 may accumulate and save data, accumulate and clear data, or just clear data. In some
embodiments, accumulator 1024 may beimplemented as an accumulation register. In some
embodiments, accumulator 1024 may include aset of arithmetic logic units (ALUSs) that include

registers.

[00121] In some embodiments, ResultEnable signal 1012 is activated in response to a
determination that data 1004 isvalid. For example, ResultEnable signal 1012 may be enabled to
enable processing by acomputation unit such as processing by multiplier 1030 and adder 1032 into

accumulator 1024.

[00122] In some embodiments, ResultCapture signal 1014 isutilized to determine the
functionality of multiplexer 1026. Multiplexer 1026 receives asinput Resultin 1006, output of
accumulator 1024, and ResultCapture signal 1014. In various embodiments, ResultCapture signal
1014 isused to enable either Resultln 1006 or the output of accumulator 1024 to pass through as
the output of multiplexer 1026. In some embodiments, multiplexer 1026 isimplemented as an
output register. In some embodiments, Resultin 1006 is connected to a computation unit in the
same column as computation unit 1000. For example, the output of aneighboring computation unit
isfed in as an input value Resultin 1006 to computation unit 1000. In some embodiments, the

input of aneighboring computation unit isthe computation unit's corresponding ResultOut value.

[00123] In some embodiments, shadow register 1028 receives asinput the output of
multiplexer 1026. In some embodiments, shadow register 1028 is configured to receive the output
of accumulator 1024 via multiplexer 1026 depending on the value of ResultCapture signal 1014. In
the example shown, the output of shadow register 1028 is output value ResultOut 1050. In various
embodiments, once aresult isinserted into shadow register 1028, accumulator 1024 may be used to
commence new calculations. For example, once the final dot-product result is stored in shadow
register 1028, accumulator 1024 may be cleared and used to accumulate and store the partia result
and eventually the final result of anew dot-product operation on new weight and data input values.

In the example shown, shadow register 1028 receives asignal ShiftEn signal 1016. In various

37

WO 2019/022872 PCT/US2018/038618

embodiments, ShiftEn signal 1016 is used to enable or disable the storing of values in the shadow
register 1028. In some embodiments, ShiftEn signal 1016 isused to shift the value stored in
shadow register 1028 to output value ResultOut 1050. For example, when ShiftEn signal 1016 is
enabled, the value stored in shadow register 1028 is shifted out of shadow register 1028 as output
value ResultOut 1050. In some embodiments, ResultOut 1050 is connected to aneighboring
computation unit's input value Resultin. In some embodiments, the last cell of acolumn of
computation units is connected to the output of the computational array. In various embodiments,
the output of the computational array feeds into avector engine such as vector engine 111 of Figure
1for vector processing. For example, the output ResultOut 1050 of a computation cell such as
computation cell 109 of Figure 1 may be fed into aprocessing element of avector engine such as

processing element 113 of vector engine 111 of Figure 1.

[00124] In the example shown, shadow register 1028 is 32-bits wide. In various
embodiments, shadow register 1028 may be sized differently, e.g., 8-bits, 16-bits, 64-bits, etc., as
appropriate. In various embodiments, each shadow register of the plurality of computation units of
acomputational array isthe same size. Invarious embodiments, shadow register 1028 isthe same
size as accumulator 1024. In various embodiments, the size of multiplexer 1026 isbased on the

size of accumulator 1024 and/or shadow register 1028 (e.g., the same size or larger).

[00125] In some embodiments, logic 1034, 1036, and 1038 receive signals, such as control
signals, to enable and/or configure the functionality of computation unit 1000. In various
embodiments, logic 1034, 1036, and 1038 are implemented using AND gates and/or functionality
corresponding to an AND gate. For example, as described above, logic 1034 receives ClearAcc
signal 1008 and an input value corresponding to the value stored in accumulator 1024. Based on
ClearAcc signal 1008, the output of logic 1034 is determined and fed to adder 1032. Asanother
example, logic 1036 receives ResultEnable signal 1012 and Clock signal 1010. Based on
ResultEnable signal 1012, the output of logic 1036 is determined and fed to accumulator 1024. As
another example, logic 1038 receives ShiftEn signal 1016 and Clock signal 1010. Based on
ShiftEn signal 1016, the output of logic 1038 is determined and fed to shadow register 1028.

[00126] In various embodiments, computation units may perform amultiplication, an
addition operation, and a shift operation at the same time, i.e., within a single cycle, thereby
doubling the total number of operations that occur each cycle. In some embodiments, results are
moved from multiplexer 1026 to shadow register 1028 in asingle clock cycle, i.e., without the need
of intermediate execute and save operations. In various embodiments, the clock cycle isbased on
the signal received a Clock signal 1010.

38

WO 2019/022872 PCT/US2018/038618

[00127] In various embodiments, input values weight 1002 and data 1004 are 8-bit values.

In some embodiments, weight 1002 is asigned value and data 1004 isunsigned. In various
embodiments, weight 1002 and data 1004 may be signed or unsigned, as appropriate. In some
embodiments, Resultln 1006 and ResultOut 1050 are 32-bit values. In various embodiments
Resultin 1006 and ResultOut 1050 are implemented using alarger number of bits than input
operands weight 1002 and data 1004. By utilizing alarge number of bits, the results of multiplying
multiple pairs of weight 1002 and data 1004, for example, to calculate a dot-product result, may be

accumulated without overflowing the scalar result.

[00128] In some embodiments, computation unit 1000 generates an intermediate and/or final
computation result in accumulator 1024. The final computation result isthen stored in shadow
register 1028 via multiplexer 1026. In some embodiments, multiplexer 1026 functions as an output
register and store the output of accumulator 1024. In various embodiments, the final computation
result isthe result of aconvolution operation. For example, the final result at ResultOut 1050 isthe
result of convolution between afilter received by computation unit 1000 asinput values using
weight 1002 and atwo-dimensional region of sensor datareceived by computation unit 1000 as

input values using data 1004.

[00129] As an example, aconvolution operation may be performed using computation unit
1000 on a2x2 datainput matrix [dO dI; d2 d3] corresponding to aregion of sensor data and afilter
corresponding to a2x2 matrix of weights [wO w1l ; w2wa3]. The 2x2 data input matrix has afirst
row [dO dI] and asecond row [d2 d3]. The filter matrix has afirst row [wO wl] and a second row
[w2 w3]. Invarious embodiments, computation unit 1000 receives the data matrix via data 1004 as
aone-dimensional input vector [dO dl d2 d3] one element per clock cycle and weight matrix via
weight 1002 as a one-dimensional input vector [wO wl w2 w3] one element per clock cycle. Using
computation unit 1000, the dot product of the two input vectors isperformed to produce a scalar
result at ResultOut 1050. For example, multiplier 1030 isused to multiply each corresponding
element of the input weight and data vectors and the results are stored and added to previous results
in accumulator 1024. For example, the result of element domultiplied by element wO(e.g., dO*
wO) isfirst stored in cleared accumulator 1024. Next, element dl ismultiplied by element wl and
added using adder 1032 to the previous result stored in accumulator 1024 (e.g., dO * wO) to
compute the equivalent of do* wO+ dl * wl. Processing continues to the third pair of elements d2
and w2 to compute the equivalent of do* wo+ dl *wl + d2 * w2 a accumulator 1024. The last
pair of elements is multiplied and the final result of the dot product isnow stored in accumulator

1024 (e.g., do* wO+dl *wl + d2 * w2 + d3 * w3). The dot-product result isthen copied to

39

WO 2019/022872 PCT/US2018/038618

shadow register 1028. Once stored in shadow register 1028, anew dot-product operation may be
initiated, for example, using a different region of sensor data. Based on ShiftEn signal 1016, the
dot-product result stored in shadow register 1028 is shifted out of shadow register 1028 to
ResultOut 1050. Invarious embodiments, the weight and data matrices may be different

dimensions than the example above. For example, larger dimensions may be used.

[00130] In some embodiments, abias parameter isintroduced and added to the dot-product
result using accumulator 1024. In some embodiments, the bias parameter isreceived asinput a
either weight 1002 or data 1004 along with amultiplication identity element asthe other input
value. The bias parameter is multiplied against the identity element to preserve the bias parameter
and the multiplication result (e.g., the bias parameter) is added to the dot-product result using adder
1032. The addition result, a dot-product result offset by abias value, is stored in accumulator 1024
and later shifted out at ResultOut 1050 using shadow register 1028. In some embodiments, abias

isintroduced using avector engine such as vector engine 111 of Figure 1.

[00131] Although the foregoing embodiments have been described in some detail for
purposes of clarity of understanding, the invention is not limited to the details provided. There are
many alternative ways of implementing the invention. The disclosed embodiments are illustrative

and not restrictive.

40

10

15

20

25

WO 2019/022872 PCT/US2018/038618

CLAIMS

1 A microprocessor system, comprising:
acomputational array that includes aplurality of computation units; and

avector computational unit in communication with the computational array.

2. The system of claim 1, wherein the vector computational unit includes aplurality of
processing elements, and the processing elements are configured to receive output data €l ements

from the computational array and process in parallél the received output data elements.

3. The system of claim 2, wherein the processing elements process in parallel the received

output data elements in response to a single processor instruction.

4, The system of claim 1, wherein the computational array includes amatrix processor.
5. The system of claim 1, wherein the computational array is configured to receive two vector

input operands.

6. The system of claim 1, wherein each computation unit of the plurality of computation units

includes an arithmetic logic unit, an accumulator, and a shadow register.

7. The system of claim 1, wherein each computation unit of the plurality of computation units

is configured to perform amultiply operation and an add operation.

8. The system of claim 1, wherein each computation unit of the plurality of computation units

is configured to perform a dot-product component operation.

9. The system of claim 1, wherein each computation unit of the plurality of computation units
is configured to compute a dot-product result component in parallel in response to asingle

computational array instruction.

10. The system of claim 2, wherein each processing element of the plurality of processing
elements includes an arithmetic logic unit configured to perform arithmetic logic unit operations in

parallel with other processing elements.

11 The system of claim 2, wherein anotification signal identifies that output data e ements

from the computational array are ready for the vector computational unit.

12. The system of claim 1, wherein the computational array is configured to operate as afirst-

in-first-out queue.

13. The system of claim 2, wherein the output data el ements from the computational array

41

10

15

20

25

30

WO 2019/022872 PCT/US2018/038618

correspond to dot-product resullts.

14. The system of claim 2, wherein the output data el ements from the computational array

correspond to convolution results performed on image data.

15. The system of claim 3 wherein the single processor instruction isused to calculate aresult

of anon-linear function.

16. The system of claim 15, wherein the non-linear function is arectified linear unit function or

asigmoid function.

17. The system of claim 1, further comprising a post-processing unit in communication with the

vector computational unit.

18. The system of claim 17, wherein the post-processing unit is configured to perform apooling

function.

19. The system of claim 2, wherein the received output data el ements from the computational

array are stored in an accumulator.

20. The system of claim 19, wherein each processing element of the plurality of processing
elements is configured to access a dice of the accumulator and a slice of one or more vector

registers.

21 Thesystem of claim 2, wherein the vector computational unit further includes a plurality of

vector registers sized to fit the output data elements from the computational array.

22. A microprocessor system, comprising:

acomputational array that includes aplurality of computation units, wherein each
computation unit of the plurality of computation units is configured to perform a dot-product
component operation in response to a single computational array instruction; and

avector computational unit in communication with the computational array, wherein the
vector computational unit includes a plurality of processing elements and the processing elements
are configured to receive output data el ements from the computational array and process in parallel

the received output data elements in response to a single vector computational unit instruction.

23. The system of claim 22, further comprising:
acontrol unit configured to provide the single computational array instruction to the
computational array and the single vector computational unit instruction to the vector

computational unit.

24. The system of claim 23, wherein the control unit synchronizes the output data elements

42

10

WO 2019/022872 PCT/US2018/038618

transferred from the computational array to the processing elements of the vector computational

unit.

25. The method comprising:
receiving a single processor instruction for avector computational unit, wherein the vector
computational unit isin communication with acomputational array and includes aplurality of
processing elements configured to receive output data el ements from the computational array;
receiving the output data elements from the computational array, wherein the computational
array includes aplurality of computation units; and

processing in parallel the received output data elements in response to the single processor
instruction.

43

WO 2019/022872 1/12 PCT/US2018/038618

100
~

103
Data Input G

N T R P R R P
1057 RPTLEEE :_-_-_-:f.'.'.': ~ 107

» Matrix Processor P vy

Control
P R S R P S Unit

Lol N B 101N

Weight Input
1
. A

A

F--pl n TR N 109

IR I A I | SRLLE.

111 o

~ 115
Post-Processing Unit

Figure 1

WO 2019/022872 2112 PCT/US2018/038618

200
~

— 203
Vector Input ¢

2ot AT AR
222\f]‘:|:"5:'"35"5:'"E:'"EE"E:'"E:'"E 207

223 JDVector Engine Input Queue y

224 AT T T
005 JD;::': :_'.:'::.'.'.': :.:'.‘::_'.:'::_'.:'::.::': :_'.:': Control
D:.-.‘:_.:?...‘:.-.‘:...':.-.’1.-.':.-.' I ’ Unit

226f |: it bR N opqon

227 AT i

228] T

220 A T i R 209

231 AT i T T T TS

211 Vector Englne

~ 215
Post-Processing Unit

Figure 2

WO 2019/022872

300
~

312 PCT/US2018/038618
~" 307
Memory l | Cont.rol
Unit
301
A
"""""""""" HTETICHR3S
311 Vector Engine
vV V V VvV VYV V Y
~ 315

Post-Processing Unit

Figure 3

4/12 PCT/US2018/038618

WO 2019/022872

L0V

v ainbi4
sng indino
L~ LEV
i
Jeyng indino
21607 j04u0D
SNV auibuz 10108/
Lev Tl A%
lsyng indu sioisibay
G2t AN e _~ ey
A
sng induj
LY

~ 00y

512 PCT/US2018/038618

WO 2019/022872

g ainbi-

8zay

62ay

oegy

legyd

LY

viAd

SiAd

G/ Y

PASL- |

~ELY

yad

594

o4

284

O WAS) v

A

eMmd

GO

LGy

" E9Y

0gd

igd

[Az1-]

£gay

LGP

oM

Lmd

GG

0Qd

~ 841

0 e¥fg

S

Z 8ihg

¢ a1ig

" LGP

0S¥ @Iqel

WO 2019/022872

6/12

501"

Determine and
Assign Processing to
be Performed

!

503 -

Determine Matrix
Processor
Instruction(s)

'

505N

Determine Vector
Engine Instruction(s)

;

507

Determine Post-
Processing
Instruction(s)

!

509«

Schedule Instruction
Sequence

Figure 5

PCT/US2018/038618

WO 2019/022872 72 PCT/US2018/038618

6011 Retrieve Pending

B Vector Engine

Instruction
" 605
YES Additional 603 Decode Instruction
Instructions?
. 607
609 - Wait for Next Execute Instruction

Instruction

'

(Instruction Complete)

Figure 6A

WO 2019/022872

8/12

PCT/US2018/038618

651"

Decode and Issue
Load Operation

}

653«

Receive Input Data

;

655

Load Vector Data
into Registers

657

|

Additional Data
Needed?

Load Additional Data

661 - Perform ALU
Operation
663 _
Write Result

Figure 6B

9/12 PCT/US2018/038618

WO 2019/022872

/ 2Inbi4

boy | epoodp aleIpawiw| m_mcmuuo sbay apoodQ | bay | epoadp
€9/ L9/L 1S/ GQG/ (374 LG/ ev/ b/
uonelado uonelsado
2101S uoneladp ondwyly 020
13 et L.

//ovm

//o_.m

WO 2019/022872

10/12

801

Fetch Vector
Instruction

v

821

Decode
Instruction

v

831

Issue Instruction

841

PCT/US2018/038618

845 -

851

No Op

~ 843

855«

861

No Op

~ 853

Load Op NO
Exists? l
Execute Load Op
ALU Op NO
Exists? l
Execute ALU Op
NO

Store Op

Exists?

865 -«

Execute Store Op

No Op

~ 863

i<

(Instruction Complete)

Figure 8

11/12 PCT/US2018/038618

WO 2019/022872

6 2Inbi4

do si01s do Nv do peon ¢ uononaisul | e uononnsuy | € uoionssuj : :
¢ uononyisul | € uononasuyl | € uononusy : :
onss| opooaq yole4 : :
oInoex3 alnoex3 anoexg _ " "
T A A T A S A S A
: G86 G/6 G966 gé6 Gve ge6 : :
: do si01s do Ny do peon Z uononusul | g uononnsug { g uononasuj :
: 2 uononuisuy | z uononasuy |z uononusul :
: anss| opooaQ Yol :
: alnoex3 onoexg onoexg _ :
T L R S S A S B T
: : €6 €96 €56 eve €e6 gc6 :
: : do e1013 do v do peoT 1 uononasul { L uononasuy | 1 uononasuy
: : L uononasy; | L uononaisul | | uononaisuy
: : onss| opooaq Yo
; ; anoexg anoexg olNoexT
196 LG6 L6 LE6 126 L6

//o_.m

12/12 PCT/US2018/038618

WO 2019/022872

NOYnsey

0L ainbi-

0S50}

<) 1§ 00y

us

N HEHg

DOVIRBID)

moeaﬁ pEO}

T QLO L
i | S —— ainde
‘ OlnssYy
‘ / 17410]"
<) 1o WINa0Y 007 K@Mmmgm«_:mmm
= ZLO0L

./f!o::

3 s
g ¢00}

S Wbiepa

upgnsey

INTERNATIONAL SEARCH REPORT International application No.

PCT/US18/38618
A. CLASSIFICATION OF SUBJECT MATTER
IPC - GO6F 17/16, 15/80, 15/18 (2018.01)
CpPC -

GO6F 15/8053, 17/16, 17/15, 7/5443, 15/18, 15/8023; GO6N 3/08, 3/0481

According to Internationa] Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

See Search History document

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

See Search History document

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
See Search History document

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 2013/0159665 A1 (KASHYAP, A.) 20 June 2013; figures 2, 5; paragraphs [0030], [0031], 1,4-9,12
[0041], [0056]. e
Y 10, 13, 19-24
X US 2014/0046995 A1 (THE MATHWORKS, INC.) 13 February 2014; figures 5, 7; paragraphs 1-3, 17-18, 25
[0052]-[0054],[0058], [0059]; claim 39. | eeeeessesseseeeeeeeooes
Y 10-1 1, 13-16, 19-24
Y US 2016/0364334 A1 (ADVANCED MICRO DEVICES, INC.) 15 December 2016; paragraphs 11

luuduy, 1wusuy.

Y US 2017/0103318 A1 (GOOGLE INC.) 13 April 2017; paragraph [0111]. 14
Y US 2017/0193360 A1 (MICROSOFT TECHNOLOGY LICENSING, LLC) 06 July 2017; 15-16

paragraphs [0056], [0081].

| | Further documents are listed in the continuation of Box C. L [See patent family annex.

* Special categories of cited documents: "T™ |ater document published after the international filing date or priority

"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention

"E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be

filing date considered novel or cannot be considered to involve an inventive
"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone

(s:ltggiallor:as;ig“éz ;hch?flfgg)catmn date of another citation or other "Y" document of particular relevance; the claimed invention cannot be

P P considered to involve an inventive step when the document is

"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art

"P" document published prior to the international filing date but later than ugu

I ; document member of the same patent family
the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report
11 August 2018 (11.08.2018) 1 0O SEP 2018

Name and mailing address of the ISA/ Authorized officer

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents Shane Thomas

P.O. Box 1450, Alexandria, Virginia 22313-1450 PCT Helpdesk: 571-272-4300

Facsimile No. 571-273-8300 PCT OSP: 571-272-7774

Form PCT/ISA/210 (second sheet) (January 201 5)

	abstract
	description
	claims
	drawings
	wo-search-report

