US 20190155678A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2019/0155678 A1

Hsiong et al.

43) Pub. Date: May 23, 2019

(54)

(71)
(72)

(73)

@

(22)

SYSTEM AND METHOD FOR HANDLING
ERRORS IN A VEHICLE NEURAL
NETWORK PROCESSOR

Applicant: Tesla, Inc., Palo Alto, CA (US)

Inventors: Christopher Hsiong, San Jose, CA
(US); Emil Talpes, San Mateo, CA
(US); Debjit Das Sarma, San Jose, CA
(US); Peter Bannon, Woodside, CA
(US); Kevin Hurd, Redwood City, CA
(US); Benjamin Floering, San Jose,
CA (US)

Assignee: Tesla, Inc., Palo Alto, CA (US)
Appl. No.: 15/817,005

Filed: Nov. 17, 2017

100

Publication Classification

Int. Cl1.
Go6r 11/07
GO6N 3/02
U.S. CL
CPC ... GO6F 11/0772 (2013.01); GO6N 3/02
(2013.01); GOGF 11/0751 (2013.01); GO6F
11/0721 (2013.01)

(51)
(2006.01)
(2006.01)

(52)

(57) ABSTRACT

A system for handling errors in a neural network includes a
neural network processor for executing a neural network
associated with use of a vehicle. The neural network pro-
cessor includes an error detector configured to detect a data
error associated with execution of the neural network and a
neural network controller configured to receive a report of
the data error from the error detector. In response to receiv-
ing the report, the neural network controller is further
configured to signal that a pending result of the neural
network is tainted without terminating execution of the
neural network.

110

Sensor

Controller 120

Sensor

Neural
network
130

Sensor

110

May 23,2019 Sheet 1 of 5 US 2019/0155678 Al

Patent Application Publication

I Ol

Josuas
ort /|

JOSUDS

/l 011

0¢T

yJomiau
[eJnan

7T J2]|0JIu0)

J0Suas

011 ii\\

JOSU3S

o1t 1\

001

< :
- ¢ Ol
-

o

w,

w,

v

=

S

v

<>

o

N

= 95¢

J0312213p JoJi3

|euorieindwo)
v e
/ —

= 082 s DFC auidua andwo) esc
~ v8z / be J010913p
< Jﬁ _\\ _—=="17 401430201014
5] [} -
= — — -=7
7 B €77 sJ1a1s18al l‘\\\\\\ —
= h smeis (474
= 782 5 Joya3ap L |

- Jouua Aj8arug
e o ACTLLIEN)]
> JOMIBU [eINaN [y, Tt~
= I % 5~ ta

" / N Jo1slap
06¢C Jo|puey | / GG7 J1010919p 10443 asuodsay
wdnusiul _ \ J04J3 UOI1DNJISU|
\ 072 (s)eoepalu|
75 10199319p \
J0JJ3 IN0dWI| vat

JO10913p J0JID Allied

DEZ Aowsw [e207 OT1¢ Jossanoud
J}JOMIBU [BINAN

Patent Application Publication

00¢

US 2019/0155678 Al

€ Dl

anipe audus

pailiwsues eleq

paAi234 eleQ

Patent Application Publication

ove
101280488y

noawi])

andwo)
']
3 L
e
- ——— P —— ———
g O€E o7E 6TE Zig TTE
= Jawil (Aewnd) (Arewiud) (Arewiad)
Jawiy JahAeT
N 3}JIOMIDN SEINT] Jawi] Jawi]
S
(g\]
ey
(g\]
P
<
=

00€

v Ol

SUOIIONJISUl
dais-98uis

—

olIM/peal 4315189y

(= .

ocy /l 14574 (8Y47 viv

US 2019/0155678 Al

\
|

- - .
J0BLIDIUI |RUIDIXT

May 23,2019 Sheet 4 of 5

: ,(viv

/l (447

0147

T

viv

00tV

Patent Application Publication

May 23, 2019 Sheet 5 of 5 US 2019/0155678 Al

Patent Application Publication

(100034 yum)
3JOMIBU [BINDU DJBUILIDY

[\ o0s

S 'Ol

1dnJ4J0o se 3jnsaJ Suipuad Ajuap| 1/
ovs

a1e3s 8ngep 01 uoISURI |

l/ 059

uoIINPOoId

dn-8uug

Jo4J9 eleq

J0443 Jo adA} sutwiislaq

Jo4J3 1noawn]

{(100g3J4 INOYHM)
}JOMIBU [BINBU DIBUIID

l/ 0€s

J04J2 wes8oud

0¢s

1odal 10118 aA1Bd8Y

\/ 018

US 2019/0155678 Al

SYSTEM AND METHOD FOR HANDLING
ERRORS IN A VEHICLE NEURAL
NETWORK PROCESSOR

TECHNICAL FIELD

[0001] The present disclosure is directed to systems and
methods for handling errors occurring in vehicles and more
particularly to systems and methods for handling errors in a
vehicle neural network processor.

BACKGROUND

[0002] Many vehicles today come equipped with a wide
range of features designed to improve safety and reliability.
In part, this is because vehicle accidents and/or breakdowns
are accompanied by a high risk of personal injury, death, and
property damage. At the very least, an accident and/or
breakdown is likely to involve significant inconvenience
and/or cost to the vehicle owner. Accordingly, many efforts
have been made to develop improved safety features for
vehicles.

[0003] Increasingly, computers are being integrated into
vehicles for purposes ranging from passenger comfort and
entertainment to partial or full self-driving operation. While
computers have the potential to address many safety and
reliability issues in vehicles, they also introduce new risks
and new modes of failure that have yet to be fully addressed.
It is important that safeguards are put in place to ensure that
computer-enabled and/or computer-assisted features of a
vehicle do not increase the risk of operating the vehicle.
Various strategies can be employed to test computer-imple-
mented vehicle features before they are put into production.
However, even when thorough testing is performed, errors
are still likely to be encountered when operating under
real-world conditions.

[0004] Accordingly, it would be advantageous to provide
improved systems and methods for handling errors in pro-
cessors used in vehicular applications.

SUMMARY

[0005] According to some embodiments, a system for
handling errors in a neural network may include a neural
network processor for executing a neural network associated
with use of a vehicle. The neural network processor includes
an error detector configured to detect a data error associated
with execution of the neural network and a neural network
controller configured to receive a report of the data error
from the error detector. In response to receiving the report,
the neural network controller is further configured to signal
that a pending result of the neural network is tainted without
terminating execution of the neural network.

[0006] According to some embodiments, a system may
include a neural network processor for executing a neural
network associated with autonomous operation of a vehicle
and an interrupt controller coupled to the neural network
processor. The interrupt controller is configured to receive
an error signal via an error interrupt pin of the neural
network processor, access error information via one or more
status registers of the neural network processor, the error
information indicating a type of error encountered by the
neural network processor, and, when the type of the error
corresponds to a data error, identify a pending result of the
neural network processor as corrupt.

May 23, 2019

[0007] According to some embodiments, a method for
handling errors in a neural network processor may include
receiving an error report based on an error encountered by
the vehicle neural network processor during operation of a
vehicle, determining a type of the error based on the error
report; and, in response to determining that the type of the
error corresponds to a data error, signaling that a pending
result of the vehicle neural network processor is corrupt
while allowing operation of the vehicle neural network
processor to proceed.

[0008] Summaries of embodiments are also provided by
the claims that follow the description.

[0009] It is to be understood that both the foregoing
general description and the following detailed description
are exemplary and explanatory in nature and are intended to
provide an understanding of the present disclosure without
limiting the scope of the present disclosure. In that regard,
additional aspects, features, and advantages of the present
disclosure will be apparent to one skilled in the art from the
following detailed description.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] FIG. 1 is a simplified diagram of a vehicle with a
neural network processing system according to some
embodiments.

[0011] FIG. 2 is a simplified diagram of a system for
processing a neural network according to some embodi-
ments.

[0012] FIG. 3 is a simplified diagram of a timeout error
detector according to some embodiments.

[0013] FIG. 4 is a simplified diagram of a neural network
processor with a debug mode according to some embodi-
ments.

[0014] FIG. 5is a simplified diagram of a method for error
handling in a neural network processor according to some
embodiments.

[0015] Embodiments of the present disclosure and their
advantages are best understood by referring to the detailed
description that follows. It should be appreciated that like
reference numerals are used to identify like elements illus-
trated in one or more of the figures, wherein showings
therein are for purposes of illustrating embodiments of the
present disclosure and not for purposes of limiting the same.

DETAILED DESCRIPTION

[0016] In the following description, specific details are set
forth describing some embodiments consistent with the
present disclosure. Numerous specific details are set forth in
order to provide a thorough understanding of the embodi-
ments. It will be apparent, however, to one skilled in the art
that some embodiments may be practiced without some or
all of these specific details. The specific embodiments dis-
closed herein are meant to be illustrative but not limiting.
One skilled in the art may realize other elements that,
although not specifically described here, are within the
scope and the spirit of this disclosure. In addition, to avoid
unnecessary repetition, one or more features shown and
described in association with one embodiment may be
incorporated into other embodiments unless specifically
described otherwise or if the one or more features would
make an embodiment non-functional. In some instances well
known methods, procedures, components, and circuits have

US 2019/0155678 Al

not been described in detail so as not to unnecessarily
obscure aspects of the embodiments.

[0017] Neural networks use patterns extracted from large
data sets to make predictions based on input data. The
predictions can include classifying the input data (e.g.,
labeling objects in an image), making decisions based on the
input data (e.g., steering an autonomous vehicle or selecting
a move in a game), clustering the input data, and/or the like.
In general, it is possible to run neural networks using general
purpose computing hardware. However, the performance of
a neural network can often be significantly improved using
application-specific hardware. For example, computing a
neural network may involve matrix operations that may be
efficiently performed using single-input multiple-data
(SIMD) processing techniques with an application-specific
hardware implementation.

[0018] While designing and using an application-specific
neural network processor may offer performance advan-
tages, the application-specific hardware may encounter
errors that are unique to the neural network processor and/or
occur more frequently in the neural network processor than
in general purpose processors. Moreover, the process of
developing and testing the application-specific hardware
may be more time-consuming and/or costly than an off-the-
shelf solution. Accordingly, it is desirable to provide
improved systems and methods for processing neural net-
works and for handling errors encountered during bring-up
and production of a neural network processor, such as a
vehicle neural network processor used in the operation of a
vehicle.

[0019] FIG.1 is a simplified diagram of a vehicle 100 with
a neural network processing system according to some
embodiments. According to some embodiments, vehicle 100
may correspond to a land vehicle such as a car, motorcycle,
or truck, an air vehicle such as an airplane, spacecraft, drone,
or satellite, a water vehicle such as a boat or submarine,
and/or the like. In some examples, vehicle 100 may be a
fully electric vehicle, a hybrid electric vehicle, a gasoline-
powered vehicle, and/or the like.

[0020] In some examples, vehicle 100 may be fully or
partially self-driving. Consistent with such embodiments,
vehicle 100 may be equipped with one or more sensors 110
that collect data associated with vehicle 100 and/or its
surroundings. The sensor data may include image data,
audio data, time-series data, and/or the like. Illustrative
examples of sensors 110 include cameras (including visible
light cameras, infrared cameras, and/or the like), micro-
phones, temperature sensors, LIDAR units, accelerometers,
tachometers, and/or the like.

[0021] In some embodiments, vehicle 100 may include a
controller 120 to perform real-time decision-making tasks
associated with autonomously driving vehicle 100. For
example, the autonomous driving tasks may include identi-
fying or classifying objects in the vicinity of vehicle 100,
controlling the steering, transmission, acceleration, and/or
braking of vehicle 100, providing alerts to a driver of vehicle
100, transmitting driving data to a remote server, and/or the
like.

[0022] In some examples, controller 120 may control
operation and/or execution of hardware and/or software. In
some examples, controller 120 may include one or more
processors, CPUs, multi-core processors, field program-
mable gate arrays (FPGAs), application specific integrated
circuits (ASICs), and/or the like. In some examples, con-

May 23, 2019

troller 120 may further include memory, which may include
one or more types of machine readable media. Some com-
mon forms of machine readable media may include floppy
disk, flexible disk, hard disk, magnetic tape, any other
magnetic medium, CD-ROM, any other optical medium,
punch cards, paper tape, any other physical medium with
patterns of holes, RAM (e.g., DRAM, SRAM, etc.), PROM,
EPROM, FLASH-EPROM, any other memory chip or car-
tridge, and/or any other medium from which a processor or
computer is adapted to read. In some examples, controller
120 may include multiple chips in multiple packages, mul-
tiple chips in a single package (e.g., system-in-package
(SIP)), and/or a single chip (e.g., system-on-chip (SOC)).

[0023] During driving operation, controller 120 may
receive streams of real-time input data from sensors 110. In
some examples, controller 120 may process the input data
from sensors 110 using a neural network. For example, the
neural network may include a series of layers, where each
layer operates on the output of one or more previous layers.
The layers are configured using weights and/or biases that
are “learned” based on training data using machine learning
techniques. Examples of layers include convolutional layers,
densely connected layers, recurrent layers, activation layers,
pooling layers, and/or the like. In some examples, the neural
network may be defined using one or more model definition
files that describe the structure of the neural network, one or
more parameter files that include pretrained weights and/or
biases of the neural network, and/or the like.

[0024] In an illustrative example, the neural network may
be an image recognition network that is trained to label
objects that appear in an image. For example, the input data
to the neural network may correspond to an image (or a
batch of images) captured by a camera of vehicle 100.
Consistent with this example, one or more first layers of the
neural network may be implemented as convolutional lay-
ers, and one or more last layers of the neural network model
may be implemented as densely connected layers. The
convolutional layers apply pretrained filters that determine
whether certain features appear in the image. For example,
the pretrained filters may correspond to particular shapes,
colors, heat signatures, movement, sizes of sub-images,
and/or patterns in the image, as well as the size and/or global
parameters of the image. The densely connected layers then
map the set of features appearing in the image to labeled
objects (e.g., “pedestrian,” “tree,” “lane marker,” “stop
sign,” etc.).

[0025] In many cases, processing neural networks is data
and/or computationally intensive. For example, a deep con-
volutional neural network used for image recognition may
include millions or billions of parameters. Correspondingly,
a forward pass through the neural network may involve
millions or billions of computations. Accordingly, it may be
desirable to process the neural network using dedicated
computational resources (e.g., hardware and/or software
resources) so as to improve the performance of the neural
network and/or reduce interference between the execution of
the neural network and other applications of controller 110.
In some embodiments, controller 120 may process the
neural network using a neural network processor 130, which
may include one or more processor cores that are substan-
tially dedicated to processing neural networks. For example,
neural network processor 130 may be implemented using
application specific integrated circuits (ASIC) and/or a field-

2 <

US 2019/0155678 Al

programmable gate array (FPGA) to achieve hardware-
accelerated performance when executing the neural net-
works.

[0026] In some examples, neural network processor 130
may process multiple neural networks in series and/or in
parallel. For example, neural network processor 130 may
process a first image recognition model that receives a
stream of input data from a front-facing camera, a second
image recognition model that receives a stream of input data
from a rear-facing camera, an audio recognition model that
receives audio data from a microphone, and/or the like.
Consistent with such examples, neural network processor
130 may sequentially process each model as new frames of
image and/or audio data are received. In other examples,
multiple neural networks may be processed in parallel using
multiple neural network processors and/or processor cores.
[0027] Although controller 120 and neural network pro-
cessor 130 are depicted as being integrated into vehicle 100
for illustrative purposes, it is to be understood that controller
120 and/or neural network processor 130 may be located
on-board and/or off-board vehicle 100. For example, vehicle
100 may transmit input sensor data to neural network
processor 130 in a remote location via a network. Moreover,
neural network processor 130 may be used to process neural
networks in a wide variety of contexts, including non-
vehicular contexts. For example, neural network processor
130 may be used for applications such as general purpose
computing, mobile computing, server-based applications,
embedded applications, industrial manufacturing, and/or the
like.

[0028] In autonomous driving applications, as well as in
other applications, one objective of neural network proces-
sor 130 is to operate continuously and reliably. For example,
neural network processor 130 may have a limited amount of
time to operate on the input data before the input data
becomes stale (i.e., the input data is no longer representative
of the current state and/or surroundings of vehicle 100). In
some circumstances, this may occur within a few hundredths
of a second, as in the case of a fast-moving vehicle. In this
regard, loss of functionality, processing delays, and/or aber-
rant behavior of neural network processor 130 while vehicle
100 is in motion could cause an accident, resulting in
property damage, injury, and/or death.

[0029] The effect of a particular error on neural network
processor 130 may vary depending on the type of the error.
Some types of errors may cause neural network processor
130 to hang or time out. That is, one or more portions of
neural network processor 130 may freeze or otherwise
remain inactive for more than a predetermined amount of
time. When a timeout error is encountered, neural network
processor 130 may cease to provide output data and/or
respond to input data. Other types of errors, such as program
errors and/or data errors, may cause the output data gener-
ated by neural network processor 130 to be corrupted. When
such errors are encountered, neural network processor 130
may continue to provide output data, but the result may be
incorrect, meaningless, and/or otherwise unusable.

[0030] To address safety concerns associated with such
errors, neural network processor 130 may include safety
features to prevent, detect, and/or respond to errors. The
safety features may be implemented and/or activated at
various stages of the design-cycle of neural network pro-
cessor 130. For example, the design-cycle of neural network
processor 130 may include a bring-up stage and a production

May 23, 2019

stage. During bring-up, neural network processor 130 may
undergo testing to verify that the functionality of neural
network processor 130 is as expected. For example, bring-up
may occur after neural network processor 130 has been
designed and taped-out to a manufacturer, but before neural
network processor 130 is put into production. Defects that
are discovered during bring-up can then be safely addressed
before neural network processor 130 is deployed in a
production model of vehicle 100 or otherwise provided to
end consumers. For example, during bring-up, neural net-
work processor 130 may be placed in a standalone test
environment and/or in a prototype model of vehicle 100.
[0031] In some examples, neural network processor 130
may have a high level of complexity and/or may include a
number of sub-systems, each of which may be designed by
different teams and/or vendors. In light of this complexity,
the process of testing of neural network processor 130
during bring-up may be extensive (e.g., occurring over a
period of weeks or months) and may have a substantial
impact on the overall safety and reliability of neural network
processor 130 and vehicle 100. For example, the testing may
reveal undesirable and/or erroneous behavior that was not
caught during the design of neural network processor 130.
Consequently, as will be discussed in further detail below
with reference to FIGS. 2-5, neural network processor 130
may include safety features that accelerate and/or improve
the ability to detect, analyze, and/or debug defects during
bring-up.

[0032] Even with extensive testing during bring-up, neural
network processor 130 may still encounter errors during
production (e.g., when deployed in a production model of
vehicle 100). During production, unlike bring-up, it is gen-
erally desirable for neural network processor 130 to
smoothly recover from an error with minimal disruption
and/or downtime. In particular, neural network processor
130 may be responsible for performing real-time decision-
making tasks associated with driving vehicle 100. Therefore,
as will be discussed in further detail below with reference to
FIGS. 2-5, neural network processor 130 may include safety
features to efficiently move past errors and restore normal
operation as quickly as possible during the production stage.
[0033] FIG. 2 is a simplified diagram of a system 200 for
processing a neural network according to some embodi-
ments. According to some embodiments consistent with
FIG. 1, system 200 may include a neural network processor
210, which generally corresponds to neural network proces-
sor 130 of controller 120.

[0034] In some examples, neural network processor 210
may include an external interface 220 for receiving and/or
transmitting data from or to one or more external resources
(e.g., other processing and/or memory resources of control-
ler 110). Among other functions, external interface 220 may
be used to receive instructions from a CPU, to read the
model definitions and/or parameters (e.g., weights and/or
biases) from memory, to access sensor data, to write out
results of the neural network, and/or the like. In some
embodiments, external interface 220 may include a direct
memory access (DMA) controller.

[0035] In some embodiments, external interface 220 may
implement one or more communication protocols. For
example, external interface 220 may interface with a CPU
(and/or other processors) of controller 110 using a non-
coherent bus protocol, such as the advanced extensible
interface (AXI) protocol. In another example, external inter-

US 2019/0155678 Al

face 220 may interface with DRAM (and/or other memory)
of controller 110 using a coherent bus protocol, such as the
AXI coherency extensions (ACE) protocol. It is to be
understood that these are merely examples, and that external
interface module 220 may implement a wide variety of
communication protocols in addition to and/or as an alter-
native to AXI and ACE.

[0036] In some examples, neural network processor 210
may include a local memory 230 that provides local data
storage for neural network processor 210. For example, local
memory 230 may store data associated with the neural
network, such as the model definition; the model parameters
(e.g., weights and/or biases); input data for the neural
network; intermediate results generated by neural network
processor 210 (e.g., the output of a hidden layer of the neural
network); final results of the neural network; and/or the like.
In some embodiments, local memory 230 may store instruc-
tions and/or programs to be executed by neural network
processor 210. In some embodiments, local memory 230
may be implemented using static RAM (SRAM).

[0037] In some examples, neural network processor 210
may include a compute engine 240. Compute engine 240
executes instructions to compute the result of the neural
network for a given set of input data. In some embodiments,
compute engine 240 may be optimized for neural network
computations. For example, compute engine 240 may
include a single-instruction multiple-data processor, a vector
processor, and/or the like. In some examples, the instruc-
tions executed by compute engine 240 may be floating point
instructions.

[0038] During operation, neural network processor 210
and/or its constituent modules (e.g., external interface 220,
local memory 230, and/or compute engine 240) may
encounter errors that may disrupt the functionality of neural
network processor 210, cause the results of neural network
processor 210 to become corrupted or tainted, and/or the
like. Accordingly, neural network processor 210 may
include one or more error detectors 251-257 to monitor the
operation of neural network processor 210 and detect the
occurrence of errors. In response to detecting an error, error
detectors 251-257 may report the detected error such that an
appropriate remedial action may be taken.

[0039] In some embodiments, error detectors 251-257
may include a response error detector 251 associated with
external interface 220. In some embodiments, response error
detector 251 may report a response error based on status
information extracted from response messages received via
external interface 220. For example, when external interface
220 issues read and/or write request, external interface 220
may receive a response packet that includes one or more
status bits to signify whether an error was encountered
during fulfillment of the request. In some examples, the
status bits may be defined in an applicable protocol, such as
the ACE protocol. For example, the status bits may include
an n-bit status code, such as a two-bit code where 00
indicates no error, 01 indicates a slave error, 10 indicates a
decode error, and 11 is undefined. Accordingly, response
error detector 251 may determine whether the status code of
a response packet indicates an error (e.g., any status code
other than 00).

[0040] In some embodiments, error detectors 251-257
may include an integrity error detector 252 associated with
external interface 220. In some embodiments, integrity error
detector 252 may verify the integrity of data received via

May 23, 2019

external interface 220 and report an integrity error when the
received data is corrupted. For example, the received data
may include an error detection code, such as a cyclic
redundancy check (CRC). Consistent with such examples,
integrity error detector 252 may verify that the error detec-
tion code matches the received data. The use of an error
detection code may be particularly beneficial when request-
ing data that persists in memory for a long period of time.
For example, the model definition and/or the model param-
eters of a neural network may be stored in memory for a
period of minutes or hours while operating vehicle 100 and
are therefore prone to stochastic errors (e.g., bit flips caused
by thermal fluctuations). In such cases, the verification of an
error detection code by integrity error detector 252 may
allow for efficient detection of corrupted data. Conversely,
real-time sensor data is generally stored in memory for a
short period of time (e.g., less than one second), making the
data less prone to stochastic errors, and therefore may not
include an error detection code.

[0041] In some embodiments, error detectors 251-257
may include a protocol error detector 253 associated with
external interface 220. In some embodiments, protocol error
detector 253 may report a protocol error when an error
associated with a communication protocol implemented by
external interface 220 is detected. For example, protocol
error detector 253 may detect illegal read and/or write
transactions associated with the AXI protocol (e.g., illegal
burst types, cacheline crossing without wrapping burst type,
etc.) when receiving instructions from the CPU.

[0042] In some embodiments, error detectors 251-257
may include a parity error detector 254 associated with local
memory 230. In some embodiments, parity error detector
254 may verity the integrity of the data stored in local
memory 230 and raise a parity error when the stored data is
identified as being corrupted. In some examples, parity
check module 242 may maintain one or more parity bits and
report the parity error when the parity bits do not match the
stored data.

[0043] In some embodiments, error detectors 251-257
may include an instruction error detector 255 associated
with local memory 230. In some embodiments, instruction
error detector 255 may validate instructions stored in local
memory 230 and raise an instruction error when the stored
instructions are invalid. For example, instruction error detec-
tor 255 may raise an instruction error when an unrecognized
instruction is detected (e.g., an instruction with an instruc-
tion code that does not correspond to an operation that neural
network processor 210 is configured to perform). In some
embodiments, instruction error detector 255 may validate
the instructions at various times during operation, e.g., while
the instructions are being written to local memory 230 (e.g.,
as they are received via a programming interface of external
interface 220, prior to execution of the neural network),
while the instructions are being retrieved from local memory
230 (e.g., as they are executed by compute engine 240),
and/or at any other suitable time.

[0044] In some embodiments, error detectors 251-257
may include a computational error detector 256 associated
with compute engine 240. In some embodiments, computa-
tional error detector 256 may report errors associated with
performing computations via compute engine 240. [llustra-
tive errors that may be encountered by compute engine 240
during operation may include invalid operations, division by
zero, overflow, underflow, denormalization, inexact num-

US 2019/0155678 Al

bers, and/or the like. In some examples, one or more of the
errors may correspond to floating point exceptions defined
by the IEEE 754 standard.

[0045] In some embodiments, error detectors 251-257
may include a timeout error detector 257. In some embodi-
ments, timeout error detector 257 may report a timeout error
when one or more modules and/or tasks performed by neural
network processor 210 hang or otherwise become unrespon-
sive. For example, timeout error detector 257 may monitor
certain types of activity in neural network processor 210,
such as receiving and/or sending data via external interface
220. After a period of inactivity, timeout error detector 257
may determine that one or more modules and/or tasks
performed by neural network processor 210 is hanging and
flag the error. In some examples, timeout error detector 257
may be implemented using a watchdog timer (WDT). An
exemplary embodiment of timeout error detector 257 is
discussed in further detail in FIG. 3.

[0046] It is to be understood that error detectors 251-257
depicted in FIG. 2 are merely examples, and that neural
network processor 210 may include many other types of
error detectors. Moreover, although error detectors 251-257
are depicted as being associated with and/or embedded
within particular modules of neural network processor 210
(e.g., external interface 220, local memory 230, and/or
compute engine 240), error detectors 251-257 may be
arranged in various additional and/or alternative configura-
tions. For example, instruction error detector 255 may be
incorporated into external interface 220 and/or compute
engine 240 in addition to and/or instead of local memory
230.

[0047] In some embodiments, neural network processor
210 may include a neural network controller 270. In some
embodiments, neural network controller 270 may maintain
state information associated with each of the one or more
neural networks running on neural network processor 210.
For example, neural network controller 270 may maintain
one or more status registers 275 for each neural network. In
some examples, status registers 275 may keep track of the
execution state of each neural network using variables such
as a progress indicator (e.g., pending, running, completed,
etc.), an error indicator, an address pointer (e.g., a location
in memory where the current result of a neural network is
stored), and/or the like.

[0048] In some examples, neural network controller 270
may set the level of one or more interrupt pins 280 for each
neural network. Interrupt pins 280 are coupled to an inter-
rupt handler 290 to enable system 200 to respond to the
interrupt signals. For example, interrupt pins 280 may
include a completion pin 282 that is used to signal when a
neural network has finished a computation and/or the results
of the neural network have been updated in output buffer
226. In some examples, completion pin 282 may be operated
as an edge-sensitive and/or level-sensitive interrupt. In
response to detecting an interrupt signal on completion pin
282, system 200 may retrieve the updated results of the
corresponding neural network.

[0049] In some embodiments, neural network controller
270 may centrally manage and/or respond to the errors
reported by error detectors 251-257. For example, errors
may be reported to neural network controller 270 using
machine check architecture (MCA) reporting. Consistent
with such embodiments, status registers 275 may store error
codes for each neural network, such as 16-bit MCA error

May 23, 2019

codes. In some examples, the error codes may indicate
whether an error occurred in the respective neural networks
(e.g., using an error valid bit), and if so, the type of error
encountered (e.g., response error, integrity error, etc.). Like-
wise, interrupt pins 280 may include an error pin 284 that is
used to signal when the neural network encounters an error.
In some examples, error pin 284 may be operated as an
edge-sensitive and/or level-sensitive interrupt. In response
to detecting an interrupt signal on error pin 284, system 200
may determine the type of the error by accessing the error
code via status register 275 and take an appropriate remedial
action based on the error type.

[0050] In some embodiments, completion pin 282 and
error pin 284 may be operated asynchronously. That is, an
error interrupt signal may be transmitted on error pin 284
without waiting for a corresponding completion interrupt
signal to be transmitted on completion pin 282. Conse-
quently, interrupt handler 290 has the option of responding
immediately to the error interrupt handler (e.g., by termi-
nating the neural network) or waiting for the pending
computation to complete despite the error. In some embodi-
ments, the decision of whether to immediately terminate the
neural network or wait for completion may depend on the
type of error.

[0051] As discussed above, neural network processor 210
may identify and flag a number of types of errors that occur
during the processing of a neural network. In some
examples, the errors may generally be categorized as pro-
gram errors (e.g., protocol errors and/or instruction errors
detected by error detector 253 and/or 255, respectively), data
errors (e.g., response errors, integrity errors, parity errors,
and/or computational errors detected by error detectors 251,
252, 254, and 256, respectively), and/or timeout errors (e.g.,
timeout errors detected by timeout error detector 257).

[0052] For some types of errors, execution of the neural
network may be terminated immediately upon error detec-
tion. For example, when a program error (e.g., a protocol
error and/or instruction error) is encountered, the neural
network may be restarted immediately upon detection of the
error in order to reload the program. In another example,
when a timeout error is encountered, neural network pro-
cessor 210 may be rebooted immediately upon detection of
the error in order to unfreeze any modules that are hanging.

[0053] For other types of errors, the next result of the
neural network computation may be deemed tainted or
corrupted, but the pending computation may still be allowed
to proceed. For example, when a data error (e.g., a response
error, integrity error, parity error, and/or computational
error) is encountered, the pending computation that is based
on the erroneous data may be allowed to proceed without
terminating execution of the neural network and/or reboot-
ing neural network processor 210. However, system 200
may be instructed to ignore or skip the result of the com-
putation. Skipping tainted results generated by the neural
network without restarting the neural network serves the
dual purpose of avoiding misplaced reliance on tainted data
while also avoiding the disruption associated with restarting
the neural network entirely. For example, in self-driving
vehicle applications, the neural network may process tens or
hundreds of image frames per second. In this context,
skipping frames on occasion may not be regarded as prob-
lematic and/or may not have a significant impact on self-
driving performance. At the same time, this approach avoids

US 2019/0155678 Al

the risk associated with relying on erroneous data because
tainted results are identified as such and thrown out.

[0054] In some embodiments, the response to certain type
of errors may depend on the design-cycle stage of system
200. For example, during the bring-up stage, when a timeout
error is encountered, neural network processor 210 may
transition to a debug mode. As discussed in greater detail
below with reference to FIG. 4, in the debug mode, the
execution of the neural network processor may be paused,
allowing access to detailed state information (e.g., register
states) of neural network processor 210 and/or allowing
single-step execution of instructions. Entering the debug
mode may facilitate rapid and/or accurate identification of
the cause of the timeout error by providing access to the state
of neural network processor 210 at the time that the error
occurred. On the other hand, entering the debug mode may
be unsuitable for the production stage; the preferred behav-
ior in response to a timeout error in the production stage may
be to attempt to restore normal operation of neural network
processor 210 as quickly as possible. Accordingly, during
the production stage, when a timeout error is encountered,
the neural network may be terminated and/or neural network
processor 210 may be rebooted immediately.

[0055] Although a single set of status registers 275 and
interrupt pins 280 are shown for simplicity, it is to be
understood that neural network processor 210 may include
multiple sets of status registers and interrupt pins. In par-
ticular, the number of sets of status registers and interrupt
pins may correspond to the number of neural networks that
neural network processor 210 is configured to process
serially and/or in parallel. In an illustrative embodiment,
neural network processor 210 may include 32 sets of status
registers and interrupt pins, such that neural network pro-
cessor 210 is able to process up to 32 neural networks at a
time.

[0056] FIG. 3 is a simplified diagram of a timeout error
detector 300 according to some embodiments. According to
some embodiments consistent with FIGS. 1-2, timeout error
detector 300 may be used to implement timeout error
detector 257 of neural network processor 210.

[0057] As depicted in FIG. 3, timeout error detector 300
includes one or more primary timers 311-319. In some
examples, primary timers 311-319 may monitor idle cycles
in one or more blocks or modules of neural network pro-
cessor 210. For example, primary timer 311 may monitor the
elapsed time since external interface 220 has received data
(e.g., read data from memory). In another example, primary
timer 312 may monitor the elapsed time since external
interface 220 has transmitted data (e.g., written data to
memory). In a further example, primary timer 319 may
monitor the elapsed time since compute engine 240 has been
active (e.g., executed instructions).

[0058] In some embodiments, the elapsed time may be
determined by counting clock cycles since activity was last
detected. For example, primary timers 311-319 may count
down from a threshold number of clock cycles. In some
examples, each of the blocks being monitored may issue a
signal indicating the occurrence of an activity (e.g., a packet
being read from and/or written to the memory, an instruction
being executed by the compute engine, and/or the like).
When a signal is received from the block being monitored,
the count resets to the threshold value. If the count reaches

May 23, 2019

zero, an error is raised. Additionally or alternately, primary
timers 311-319 may count up from zero until the threshold
number is reached.

[0059] In some embodiments, timeout detection module
300 may additionally include one or more composite timers,
such as a layer timer 320 and/or a neural network timer 330.
In some embodiments, the composite timers may monitor
aggregate activity in a plurality of blocks of neural network
processor 210. For example, the composite timers may
concurrently monitor the elapsed time since external inter-
face 200 has received data, the elapsed time since external
interface 200 has transmitted data, and/or the elapsed time
since compute engine 240 has been active.

[0060] In some examples, layer timer 320 may time out
when the time taken to process a layer of the neural network
has exceeded a predetermined amount of time. Consistent
with such examples, layer timer 320 may monitor a sum of
activities pertaining to executing a layer in a neural network,
which may include, but is not limited to, memory read,
memory write, and compute engine activity. In some
examples, the threshold time for layer timer 320 may be
greater than the threshold time for each of primary timers
311-319.

[0061] In some examples, neural network timer 330 may
time out when the time taken to process the entire neural
network has exceeded a predetermined amount of time.
Consistent with such examples, neural network timer 330
may monitor a sum of activities pertaining to executing a
neural network, which may include, but is not limited to,
memory read, memory write, and compute engine activity.
In some examples, the threshold time for neural network
timer 330 may be greater than the threshold time for primary
timers 311-319 and/or layer timer 320. For example, the
threshold time for neural network timer 330 may be one
billion clock cycles.

[0062] In some examples, an aggregator 340 may provide
an aggregate timeout error signal based on the outputs of
primary timers 311-319 and/or the composite timers (e.g.,
layout timer 320 and/or neural network timer 330). Accord-
ing to some embodiments, the aggregate timeout error signal
may indicate an error when any of primary timers 311-319,
layer timer 320, and/or neural network timer 330 time out.
That is, timeout error detector 300 may report a timeout
error when individual modules of neural network processor
210 hang (resulting in one or more of primary timers
311-319 timing out), when a layer of the neural network
hangs (resulting in layer timer 320 timing out), and/or when
the neural network hangs (resulting in network timer 330
timing out).

[0063] FIG. 4 is a simplified diagram of a neural network
processor 400 with a debug mode according to some
embodiments. According to some embodiments consistent
with FIGS. 1-3, neural network processor 400 may be used
to implement neural network processor 210 of system 200.
FIG. 4 illustrates the ability to access hidden registers of
neural network processor 400 when debugging processor
400 during bring-up. In some examples, during bring-up,
neural network processor 400 may transition from an oper-
ating mode (e.g., normal execution of neural networks) to
the debug mode automatically in response to an error, such
as a timeout error.

[0064] Neural network processor 400 includes a plurality
of registers that store state information and/or various other
types information (e.g., instructions, data, address pointers,

US 2019/0155678 Al

etc.) associated with neural network processor 400. In some
examples, the plurality of registers may include one or more
top level registers 412 that may be easily and/or directly
accessed via an external interface (e.g., via external interface
220 using the AXI bus protocol) for debugging purposes.
Moreover, the plurality of registers includes one or more
deep registers 414 that are not easily and/or directly
accessed by external means. For example, the data stored in
deep registers 414 may be accessed by migrating the data
into top level registers 412 via multiplexers 420. Accord-
ingly, the data stored in deep registers 414 may take a
substantial amount of time to retrieve.

[0065] Conventionally, when a processor encounters an
error, such as a timeout error, the running processes of the
processor are terminated and/or rebooted without providing
access to the state information stored in the processor’s
registers. Alternately, a snapshot may be saved that captures
a subset of the processor’s state information at the moment
of the timeout error. For example, the snapshot may include
data from one or more top level registers, such as top level
registers 412. However, the snapshot generally does not
include data from deep registers, such as deep registers 414.
In particular, generating a comprehensive snapshot of the
deep registers is likely to take a long time and be inefficient,
as much of the information stored in the deep registers
would be irrelevant to the error at hand. Nevertheless, the
ability to selectively access relevant data from the deep
registers would be desirable to accelerate the process of
debugging the processor.

[0066] To address these issues, the execution of neural
networks by neural network processor 400 is paused in the
debug mode, such that the data in many registers of neural
network processor 400 no longer changes values as in the
operating mode. In some embodiments, neural network
processor 400 otherwise remains capable of responding to
external stimuli and/or requests in the debug mode. Conse-
quently, the engineer tasked with debugging the error retains
access to data from the registers, including top level registers
412 and deep registers 414. For example, the engineer can
control multiplexers 420 to manually find information rel-
evant to the error stored in deep registers 414. Moreover, as
depicted in FIG. 4, the engineer may have the ability to run
single-step instructions on neural network processor 400 to
determine how incremental operations impact the state of
neural network processor 400. These capabilities may assist
the engineer in determining the root cause of the error.
Accordingly, the process of debugging neural network pro-
cessor 400 may be substantially accelerated relative to
conventional approaches.

[0067] FIG. 5 is a simplified diagram of a method 500 for
error handling in a neural network processor according to
some embodiments. According to some embodiments con-
sistent with FIGS. 1-4, method 500 may be implemented by
neural network processors 120, 220, and/or 400.

[0068] At a process 510, an error report is received. For
example, the error report may be received from one or more
error detectors of the neural network processors, such as
error detectors 251-257, in response to detecting an error.
Iustrative examples of error reports include response
errors, integrity errors, protocol errors, parity errors, instruc-
tion errors, computation errors, and/or timeout errors, as
discussed previously with respect to FIG. 2. In some
examples, the error report may correspond to a machine
check architecture (MCA) error report.

May 23, 2019

[0069] At a process 520, a type of the error is determined.
In some embodiments, determining the type of the error may
include determining whether the error corresponds to a
program error, a data error, and/or a timeout error. For
example, program errors may include protocol errors and/or
instruction errors; data errors may include response errors,
integrity errors, parity errors, and/or computation errors; and
timeout errors may include errors raised by timeout error
detector 257. When a program error is encountered, method
500 may proceed to processes 530 and 540 for terminating
execution of the neural network and identifying a pending
result of the neural network as corrupt, respectively. When
a data error is encountered, method 500 may proceed to
process 540 for identifying a pending result of the neural
network as corrupt without terminating execution of the
neural network at process 530. When a timeout error is
encountered, method 500 may proceed to either a process
550 for transitioning to a debug state or a process 560 for
terminating execution of the neural network and resetting
the neural network processor, depending on whether the
neural network processor is operating in a bring-up mode or
a production mode.

[0070] At a process 530, execution of the neural network
is terminated and/or paused immediately, without resetting
the neural network processor. In some embodiments, process
530 may be performed when a program error is encountered
because the neural network processor may not be able to
continue executing the neural network when the instructions
to be executed are defective (e.g., when the program instruc-
tions include unrecognized or otherwise invalid commands
and/or instruction codes). Accordingly, the execution of the
neural network may be immediately halted such that the
instructions may be reloaded and/or otherwise corrected.
[0071] At a process 540, a pending result of the neural
network is identified as being corrupt. In some embodi-
ments, the pending result may be identified as corrupt by
changing the level of an error interrupt pin of the neural
network processor, such as error interrupt pin 284. Changing
the level of the error interrupt pin may cause an external
system, such as interrupt handler 290, to access error infor-
mation (e.g., by retrieving error information from the status
registers of the neural network processor) and determine an
appropriate remedial action. Examples of remedial actions
that may be taken in response to the pending result of the
neural network being identified as corrupt may include
retrying the pending neural network computation from
scratch and/or from a previous checkpoint; dropping the
pending results entirely and moving on to the next compu-
tation; rebooting the neural network processor; and/or the
like.

[0072] At a process 550, when the neural network proces-
sor encounters a timeout error during bring-up, the neural
network processor transitions to a debug mode. As described
previously with respect to FIG. 4, when the neural network
processor transitions to the debug mode, the execution of the
neural network processor is paused, such that the register
values at the time of the timeout error stop changing. In this
regard, an engineer may debug the timeout error by inspect-
ing the register values and/or through single-step execution
of instructions.

[0073] At a process 560, when the neural network proces-
sor encounters a timeout error in production, execution of
the neural network is terminated and the neural network
processor is rebooted. Unlike the bring-up case, it is desir-

US 2019/0155678 Al

able to get the neural network processor back up and running
as quickly as possible in response to a timeout error.
Moreover, there are generally no engineering resources
available to debug the neural network processor in produc-
tion. Accordingly, rebooting the neural network processor to
eliminate the hanging condition may be a preferred response
to the timeout error in production.

[0074] Some examples of processors, such as neural net-
work processors 120, 220, and/or 400, may include non-
transient, tangible, machine readable media that include
executable code that when run by one or more processors
(e.g., processors 120, 220, and/or 400) may cause the one or
more processors to perform the processes of method 500.
Some common forms of machine readable media that may
include the processes of method 500 are, for example, floppy
disk, flexible disk, hard disk, magnetic tape, any other
magnetic medium, CD-ROM, any other optical medium,
punch cards, paper tape, any other physical medium with
patterns of holes, RAM, PROM, EPROM, FLASH-
EPROM, any other memory chip or cartridge, and/or any
other medium from which a processor or computer is
adapted to read.

[0075] Although illustrative embodiments have been
shown and described, a wide range of modification, change
and substitution is contemplated in the foregoing disclosure
and in some instances, some features of the embodiments
may be employed without a corresponding use of other
features. One of ordinary skill in the art would recognize
many variations, alternatives, and modifications. Thus, the
scope of the invention should be limited only by the fol-
lowing claims, and it is appropriate that the claims be
construed broadly and in a manner consistent with the scope
of the embodiments disclosed herein.

What is claimed is:

1. A neural network processor for executing a neural
network associated with use of a vehicle, the neural network
processor comprising:

an error detector configured to detect a data error asso-

ciated with execution of the neural network; and

a neural network controller configured to receive a report

of the data error from the error detector, wherein, in
response to receiving the report, the neural network
controller is further configured to signal that a pending
result of the neural network is tainted without termi-
nating execution of the neural network.

2. The neural network processor of claim 1, wherein the
data error includes at least one of a response error, an
integrity error, a parity error, or a computation error.

3. The neural network processor of claim 1, further
comprising an error interrupt pin for communication with an
interrupt controller, wherein the neural network controller
signals to the interrupt controller that the pending result of
the neural network is tainted via the error interrupt pin.

4. The neural network processor of claim 1, wherein the
neural network controller further includes a status register
that stores information associated with the data error.

5. The neural network processor of claim 1, further
comprising a second error detector configured to detect a
program error associated with the neural network.

6. The neural network processor of claim 5, wherein the
neural network controller is further configured to receive a
second report of the program error from the second error
detector and wherein, in response to receiving the second
report, the neural network controller is further configured to

May 23, 2019

terminate execution of the neural network and signal that the
pending result of the neural network is tainted.

7. The neural network of claim 5, wherein the program
error includes at least one of a protocol error or an instruc-
tion error.

8. The neural network processor of claim 1, further
comprising a timeout error detector configured to detect a
timeout error associated with the neural network.

9. The neural network processor of claim 8, wherein the
neural network controller is further configured to receive a
third report of the timeout error from the timeout error
detector and wherein, in response to receiving the third
report, the neural network controller is further configured to
reboot the neural network processor.

10. The neural network processor of claim 8, wherein the
timeout error detector comprises a plurality of primary
timers that monitor idle cycles in a corresponding plurality
of blocks of the neural network processor, and one or more
composite timers that monitor aggregate activity in the
plurality of blocks of the neural network processor.

11. The neural network processor of claim 10, wherein the
one or more composite timers includes a layer timer that
times out when a time taken to process a layer of the neural
network exceeds a predetermined threshold time.

12. The neural network processor of claim 10, wherein the
one or more derivative timers includes a neural network
timer that times out when a time taken to process the neural
network exceeds a predetermined threshold time.

13. The neural network processor of claim 1, wherein the
neural network is configured to identify features in stream of
images captured by a camera of the vehicle.

14. The neural network processor of claim 1, wherein the
neural network processor concurrently executes one or more
additional neural networks, and wherein the neural network
controller separately manages errors associated with each of
the one or more additional neural networks.

15. A system comprising:

a neural network processor for executing a neural network

associated with autonomous operation of a vehicle; and

an interrupt controller coupled to the neural network

processor, wherein the interrupt controller is configured

to:

receive an error signal via an error interrupt pin of the
neural network processor;

access error information via one or more status regis-
ters of the neural network processor, the error infor-
mation indicating a type of error encountered by the
neural network processor; and

when the type of the error corresponds to a data error,
identify a pending result of the neural network
processor as corrupt.

16. The system of claim 15, wherein the neural network
processor is further configured to terminate execution of the
neural network when the type of the error corresponds to a
program error.

17. The system of claim 15, wherein, during bring-up of
the neural network processor, the neural network processor
is further configured to transition to a debug mode when the
type of the error corresponds to a timeout error.

18. The system of claim 17, wherein, in the debug mode,
the neural network processor is configured to provide access
to one or more deep registers and to perform single-step
instructions.

US 2019/0155678 Al

19. A method for handling errors in a vehicle neural
network processor, the method comprising:
receiving an error report based on an error encountered by
the vehicle neural network processor during operation
of a vehicle;
determining a type of the error based on the error report;
and
in response to determining that the type of the error
corresponds to a data error, signaling that a pending
result of the vehicle neural network processor is corrupt
while allowing operation of the vehicle neural network
processor to proceed.
20. The method of claim 19, wherein the data error is
raised in response to the vehicle neural network processor
receiving invalid input data.

#* #* #* #* #*

May 23, 2019

