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A microprocessor system comprises a computational array 
and a hardware data formatter . The computational array 
includes a plurality of computation units that each operates 
on a corresponding value addressed from memory . The 
values operated by the computation units are synchronously 
provided together to the computational array as a group of 
values to be processed in parallel . The hardware data for 
matter is configured to gather the group of values , wherein 
the group of values includes a first subset of values located 
consecutively in memory and a second subset of values 
located consecutively in memory . The first subset of values 
is not required to be located consecutively in the memory 
from the second subset of values . 
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COMPUTATIONAL ARRAY 
MICROPROCESSOR SYSTEM USING 

NON - CONSECUTIVE DATA FORMATTING 

[ 0004 ] FIG . 1 is a block diagram illustrating an embodi 
ment of a microprocessor system for performing machine 
learning processing . 
[ 0005 ] FIG . 2 is a flow diagram illustrating an embodi 
ment of a process for performing machine learning process CROSS REFERENCE TO OTHER 

APPLICATIONS ing . 

[ 0001 ] This application claims priority to U . S . Provisional 
Patent Application No . 62 / 628 , 212 entitled A COMPUTA 
TIONAL ARRAY MICROPROCESSOR SYSTEM USING 
NON - CONSECUTIVE DATA FORMATTING filed Feb . 8 , 
2018 , and this application claims priority to U . S . Provisional 
Patent Application No . 62 / 625 , 251 entitled VECTOR COM 
PUTATIONAL UNIT filed Feb . 1 , 2018 , and this application 
claims priority to U . S . Provisional Patent Application No . 
62 / 536 , 399 entitled ACCELERATED MATHEMATICAL 
ENGINE filed Jul . 24 , 2017 , and this application is a 
continuation - in - part of co - pending U . S . patent application 
Ser . No . 15 / 710 , 433 entitled ACCELERATED MATH 
EMATICAL ENGINE filed Sep . 20 , 2017 , which claims 
priority to U . S . Provisional Patent Application No . 62 / 536 , 
399 entitled ACCELERATED MATHEMATICAL ENGINE 
filed Jul . 24 , 2017 , all of which are incorporated herein by 
reference for all purposes . 

[ 0006 ] FIG . 3 is a flow diagram illustrating an embodi 
ment of a process for performing machine learning process 
ing . 
[ 0007 ] FIG . 4 is a block diagram illustrating an embodi 
ment of a computation unit of a computational array . 
[ 0008 ] FIG . 5 is a block diagram illustrating an embodi 
ment of a cache - enabled microprocessor system for per 
forming machine learning processing . 
[ 0009 ] FIG . 6 is a block diagram illustrating an embodi 
ment of a hardware data formatter , cache , and memory 
components of a microprocessor system . 
[ 0010 FIG . 7 is a flow diagram illustrating an embodi 
ment of a process for performing machine learning process 
ing 
( 0011 ] FIG . 8 is a flow diagram illustrating an embodi 
ment of a process for retrieving input operands for a com 
putational array . 

DETAILED DESCRIPTION 

BACKGROUND OF THE INVENTION 
[ 0002 ] Processing for machine learning and artificial intel 
ligence typically requires performing mathematical opera 
tions on large sets of data and often involves solving 
multiple convolution layers . Applications of machine learn 
ing , such as self - driving and driver - assisted automobiles , 
often utilize array computational operations to calculate 
matrix and vector results . For example , array computational 
operations may be used to compute convolutional layers 
such as when performing image processing on captured 
sensor data . In many situations , a large amount of data is 
required to perform the necessary computational operations . 
Traditional implementations of these operations often 
require loading each element of a computational operation 
from a unique memory address . For a convolution operation , 
the process typically requires calculating an individual 
memory address for each element . Moreover , there is a 
potential to incur an additional delay from the latency 
involved in reading each data element from memory . These 
performance penalties are magnified when performing wide 
convolution operations that involve large input matrices and 
many matrix elements . Traditional solutions for performing 
computational operations , such as relying on multiple 
graphical processing unit ( GPU ) cores , utilize parallel pro 
cessing to decrease the time spent computing . However , 
these solutions are limited in throughput in part due to the 
latency incurred by reading input data from memory . There 
fore , there exists a need for a microprocessor system with 
increased throughput that performs array computational 
operations without the need to perform computationally and 
latency expensive operations for each of the individual 
elements of the input data . 

[ 0012 ] The invention can be implemented in numerous 
ways , including as a process ; an apparatus ; a system ; a 
composition of matter , a computer program product embod 
ied on a computer readable storage medium ; and / or a 
processor , such as a processor configured to execute instruc 
tions stored on and / or provided by a memory coupled to the 
processor . In this specification , these implementations , or 
any other form that the invention may take , may be referred 
to as techniques . In general , the order of the steps of 
disclosed processes may be altered within the scope of the 
invention . Unless stated otherwise , a component such as a 
processor or a memory described as being configured to 
perform a task may be implemented as a general component 
that is temporarily configured to perform the task at a given 
time or a specific component that is manufactured to per 
form the task . As used herein , the term ' processor ' refers to 
one or more devices , circuits , and / or processing cores con 
figured to process data , such as computer program instruc 
tions . 
[ 0013 ] A detailed description of one or more embodiments 
of the invention is provided below along with accompanying 
figures that illustrate the principles of the invention . The 
invention is described in connection with such embodi 
ments , but the invention is not limited to any embodiment . 
The scope of the invention is limited only by the claims and 
the invention encompasses numerous alternatives , modifi 
cations and equivalents . Numerous specific details are set 
forth in the following description in order to provide a 
thorough understanding of the invention . These details are 
provided for the purpose of example and the invention may 
be practiced according to the claims without some or all of 
these specific details . For the purpose of clarity , technical 
material that is known in the technical fields related to the 
invention has not been described in detail so that the 
invention is not unnecessarily obscured . 
[ 0014 ] A microprocessor system for performing high 
throughput array computational operations is disclosed . In 
some embodiments , a microprocessor system includes a 
computational array ( e . g . , matrix processor ) in communica 

BRIEF DESCRIPTION OF THE DRAWINGS 

[ 0003 ] Various embodiments of the invention are dis 
closed in the following detailed description and the accom 
panying drawings . 
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tion with a hardware data formatter for aligning the data to 
minimize data reads and the latency incurred by reading 
input data for processing . For example , a matrix processor 
allows a plurality of elements of a matrix and / or vector to be 
loaded and processed in parallel together . Thus , using data 
formatted by one or more hardware data formatters , a 
computational operation such as a convolution operation 
may be performed by the computational array . 
[ 0015 ] One technique includes loading a large number of 
consecutive elements ( e . g . , consecutive in memory ) of a 
matrix / vector together and performing operations on the 
consecutive elements in parallel using the matrix processor . 
By loading consecutive elements together , a single memory 
load and / or cache check for the entire group of elements can 
be performed allowing the entire group of elements to be 
loaded using minimal processing resources . However , 
requiring the input elements of each processing iteration of 
the matrix processor to be consecutive elements could 
potentially require the matrix processor to load a large 
number of matrix / vector elements that are to be not utilized . 
For example , performing a convolution operation using a 
stride greater than one requires access to matrix elements 
that are not consecutive . If parallel input elements to the 
matrix processor are required to be consecutive , each pro 
cessing iteration of the matrix processor is unable to fully 
utilize every individual input element for workloads only 
requiring non - consecutive elements . An alternative tech 
nique is to not require every individual input element of the 
matrix processor be consecutive ( e . g . , every individual input 
element can be independently specified without regard to 
whether it is consecutive in memory to a previous input 
element ) . This technique incurs significant performance 
costs since each referenced element incurs the cost of 
determining its memory address and performing a cache 
check for the individual element with the potential of an 
even more expensive load from memory in the case of a 
cache miss . 
[ 0016 ] . In an embodiment of a disclosed microprocessor 
system , the group of input elements of a matrix processor are 
divided into a plurality of subsets , wherein elements within 
each subset are required be consecutive but the different 
subsets are not required to be consecutive . This allows the 
benefit of reduce resources required to load consecutive 
elements within each subset while providing the flexibility 
of loading non - consecutive elements across the different 
subsets . For example , a hardware data formatter loads 
multiple subsets of elements where the elements of each 
subset are located consecutively in memory . By loading the 
elements of each subset together , a memory address calcu 
lation and cache check is performed only with respect to the 
start and end elements of each subset . In the event of a cache 
miss , an entire subset of elements is loaded together from 
memory . Rather than incurring a memory lookup penalty on 
a per element basis as with the previous discussed technique , 
a cache check is minimized to two checks for each subset 
( the start and end elements ) and a single memory read for the 
entire subset in the event of a cache miss . Computational 
operations on non - consecutive elements , such as the per 
forming convolution using a stride greater than one , are 
more efficient since the memory locations of the subsets 
need not be consecutively located in memory . Using the 
disclosed system and techniques , computational operations 
may be performed on non - consecutive elements with 
increased throughput and a high clock frequency . 

[ 0017 ] In various embodiments , a computational array 
performs matrix operations involving input vectors and 
includes a plurality of computation units to receive M 
operands and N operands from the input vectors . Using a 
sequence of input vectors , a computational array may per 
form matrix operations such as a matrix multiplication . In 
some embodiments , the computation units are sub - circuits 
that include an arithmetic logic unit , an accumulator , a 
shadow register , and a shifter for performing operations such 
as generating dot - products and various processing for con 
volution . Unlike conventional graphical processing unit 
( GPU ) or central processing unit ( CPU ) processing cores , 
where each core is configured to receive its own unique 
processing instruction , the computation units of the compu 
tational array each perform the same computation in parallel 
in response to an individual instruction received by the 
computational array . 
[ 0018 ] In various embodiments , the data input to the 
computational array is prepared using a hardware data 
formatter . For example , a hardware data formatter is utilized 
to load and align data elements using subsets of elements 
where the elements of each subset are located consecutively 
in memory and the subsets need not be located consecutively 
in memory . In various embodiments , the various subsets 
may each have a memory location independent from other 
subsets . For example , the different subsets may be located 
non - consecutively in memory from one another . By restrict 
ing the data elements within a subset to consecutive data , 
multiple consecutive data elements are processed together , 
which minimizes the calculations and delay incurred when 
preparing the data for a computational array . For example , a 
subset of data elements may be cached as a consecutive 
sequence of data elements by performing a cache check on 
the start and end element and , in the event of a cache miss 
on either element , a single data read to load the entire subset 
from memory into a memory cache . Once all the data 
elements are available , the data may be provided together to 
the computational array as a group of values to be processed 
in parallel . 
[ 0019 ] In some embodiments , a microprocessor system 
comprises a computational array and a hardware data for 
matter . For example , a microprocessor system includes a 
matrix processor capable of performing matrix and vector 
operations . In various embodiments , the computational 
array includes a plurality of computation units . For example , 
the computation units may be sub - circuits of a matrix 
processor that include the functionality for performing one 
or more multiply , add , accumulate , and shift operations . As 
another example , computation units may be sub - circuits that 
include the functionality for performing a dot - product opera 
tion . In various embodiments , the computational array 
includes a sufficient number of computation units for per 
forming multiple operations on the data inputs in parallel . 
For example , a computational array configured to receive M 
operands and N operands may include at least MXN com 
putation units . In various embodiments , each of the plurality 
of computation units operates on a corresponding value 
formatted by a hardware data formatter and the values 
operated by the plurality of computation units are synchro 
nously provided together to the computational array as a 
group of values to be processed in parallel . For example , 
values corresponding to elements of a matrix are processed 
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by one or more hardware data formatters and provided to the 
computational array together as a group of values to be 
processing in parallel . 
10020 ] In various embodiments , a hardware data formatter 
is configured to gather the group of values to be processed 
in parallel by the computational array . For example , a 
hardware data formatter retrieves the values from memory , 
such as static random access memory ( SRAM ) , via a cache . 
In some embodiments , in the event of a cache miss , the 
hardware data formatter loads the values into the cache from 
memory and subsequently retrieves the values from the 
cache . In various embodiments , the values provided to the 
computational array correspond to computational operands . 
For example , a hardware formatter may process M operands 
as an input vector to a computational array . In various 
embodiments , a second hardware formatter may process N 
operands as a second input vector to the computational array . 
In some embodiments , each hardware data formatter pro 
cesses a group of values synchronously provided together to 
the computational array , where each group of values 
includes a first subset of values located consecutively in 
memory and a second subset of values located consecutively 
in memory , yet the first subset of values are not located 
consecutively in the memory from the second subset of 
values . For example , a hardware data formatter loads a first 
subset of values stored consecutively in memory and a 
second subset of values also stored consecutively in memory 
but with a gap in memory between the two subsets of values . 
Each subset of values is loaded as consecutive values into 
the hardware data formatter . To prepare an entire vector of 
inputs for a computational array , the hardware data formatter 
performs loads based on the number of subsets instead of 
based on the total number of elements needed for an input 
operand to a computational array . 
[ 0021 ] FIG . 1 is a block diagram illustrating an embodi 
ment of a microprocessor system for performing machine 
learning processing . In the example shown , microprocessor 
system 100 includes control unit 101 , data input 103 , data 
formatter 104 , weight input 105 , weight formatter 106 , 
matrix processor 107 , vector engine 111 , and post - process 
ing unit 115 . Data input 103 and weight input 105 are input 
data that is fed to hardware data formatters data formatter 
104 and weight formatter 106 . In some embodiments , data 
input 103 and / or weight input 105 are retrieved from a 
memory ( not shown ) , which may include a memory cache or 
buffer to reduce latency when reading data . In the example 
shown , data formatter 104 and weight formatter 106 are 
hardware data formatters for preparing data for matrix 
processor 107 . In some embodiments , data formatter 104 
and weight formatter 106 include a logic circuit for prepar 
ing data for matrix processor 107 and / or a memory cache or 
buffer for storing and processing input data . For example , 
data formatter 104 may prepare N operands from a two 
dimensional array retrieved from data input 103 that corre 
spond to image data . Weight formatter 106 may prepare M 
operands retrieved from weight input 105 that correspond to 
a vector of weight values . Data formatter 104 and weight 
formatter 106 prepare the N and M operands to be processed 
by matrix processor 107 . In some embodiments , micropro 
cessor system 100 , including at least hardware data format 
ters data formatter 104 and weight formatter 106 , matrix 
processor 107 , vector engine 111 , and post - processing unit 
115 , perform the processes described below with respect to 
FIGS . 2 , 3 , 7 , and 8 . 

[ 0022 ] In some embodiments , matrix processor 107 is a 
computational array that includes a plurality of computation 
units . For example , a matrix processor receiving M operands 
and N operands from weight formatter 106 and data for 
matter 104 , respectively , includes MxN computation units . 
In the figure shown , the small squares inside matrix proces 
sor 107 depict that matrix processor 107 includes a logical 
two - dimensional array of computation units . Computation 
unit 109 is one of a plurality of computation units of matrix 
processor 107 . In some embodiments , each computation unit 
is configured to receive one operand from data formatter 104 
and one operand from weight formatter 106 . In some 
embodiments , the computation units are configured accord 
ing to a logical two - dimensional array but the matrix pro 
cessor is not necessarily fabricated with computation units 
laid out as a physical two - dimensional array . For example , 
the i - th operand of data formatter 104 and the j - th operand 
of weight formatter 106 are configured to be processed by 
the i - thxj - th computation unit of matrix processor 107 . 
[ 0023 ] In various embodiments , the data width of compo 
nents data formatter 104 , weight formatter 106 , matrix 
processor 107 , vector engine 111 , and post - processing unit 
115 are wide data widths and include the ability to transfer 
more than one operand in parallel . In some embodiments , 
data formatter 104 and weight formatter 106 are each 
96 - bytes wide . In some embodiments , data formatter 104 is 
192 - bytes wide and weight formatter 106 is 96 - bytes wide . 
In various embodiments , the width of data formatter 104 and 
weight formatter 106 is dynamically configurable . For 
example , data formatter 104 may be dynamically configured 
to 96 or 192 bytes and weight formatter 106 may be 
dynamically configured to 96 or 48 bytes . In some embodi 
ments , the dynamic configuration is controlled by control 
unit 101 . In various embodiments , a data width of 96 bytes 
allows 96 operands to be processed in parallel . For example , 
in an embodiment with data formatter 104 configured to be 
96 - bytes wide , data formatter 104 can transfer 96 operands 
to matrix processor 107 in parallel . 
[ 0024 ] In various embodiments , data input 103 and weight 
input 105 are input data to corresponding hardware data 
formatters data formatter 104 and weight formatter 106 
based on memory addresses calculated by the hardware data 
formatters . In some embodiments , data formatter 104 and / or 
weight formatter 106 retrieves via data input 103 and weight 
input 105 , respectively , a stream of data corresponding to 
one or more subsets of values stored consecutively in 
memory . Data formatter 104 and / or weight formatter 106 
may retrieve one or more subsets of values stored consecu 
tively in memory and prepare the data as input values for 
matrix processor 107 . In various embodiments , the one or 
more subsets of values are not themselves stored consecu 
tively in memory with other subsets of values . In some 
embodiments , data input 103 and / or weight input 105 are 
retrieved from memory ( not shown in FIG . 1 ) that contains 
a single read port . In some embodiments , the memory 
contains a limited number of read ports and the number of 
read ports is fewer than the data width of components data 
formatter 104 , weight formatter 106 , matrix processor 107 , 
vector engine 111 , and / or post - processing unit 115 . In some 
embodiments , the memory includes a cache and a hardware 
data formatter , such as data formatter 104 and weight 
formatter 106 , which will perform a cache check to deter 
mine whether each subset of values is in the cache prior to 
issuing a read request to memory . In the event the subset of 
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values is cached , a hardware data formatter ( e . g . , data 
formatter 104 or weight formatter 106 ) will retrieve the data 
from the cache . In various embodiments , in the event of a 
cache miss , the hardware data formatter ( e . g . , data formatter 
104 or weight formatter 106 ) will retrieve the entire subset 
of values from memory and populate the cache with the 
retrieved values . 
[ 0025 ] In various embodiments , matrix processor 107 is 
configured to receive N bytes from data formatter 104 and 
M bytes from weight formatter 106 and includes at least 
MxN computation units . For example , matrix processor 107 
may be configured to receive 96 bytes from data formatter 
104 and 96 bytes from weight formatter 106 and includes at 
least 96x96 computation units . As another example , matrix 
processor 107 may be configured to receive 192 bytes from 
data formatter 104 and 48 bytes from weight formatter 106 
and includes at least 192x48 computation units . In various 
embodiments , the dimensions of matrix processor 107 may 
be dynamically configured . For example , the default dimen 
sions of matrix processor 107 may be configured to receive 
96 bytes from data formatter 104 and 96 bytes from weight 
formatter 106 but the input dimensions may be dynamically 
configured to 192 bytes and 48 bytes , respectively . In 
various embodiments , the output size of each computation 
unit is equal to or larger than the input size . For example , in 
some embodiments , the input to each computation unit is 
two 1 - byte operands , one corresponding to an operand from 
data formatter 104 and one from weight formatter 106 , and 
the output of processing the two operands is a 4 - byte result . 
As another example , matrix processor 107 may be config 
ured to receive 96 bytes from data formatter 104 and 96 
bytes from weight formatter 106 and output 96 4 - byte 
results . In some embodiments , the output of matrix proces 
sor 107 is a vector . For example , a matrix processor con 
figured to receive two 96 - wide input vectors , where each 
element ( or operand ) of the input vector is one byte in size , 
can output a 96 - wide vector result where each element of the 
vector result is 4 - bytes in size . 
[ 0026 ] . In various embodiments , each computation unit of 
matrix processor 107 is a sub - circuit that includes an arith 
metic logic unit , an accumulator , and a shadow register . In 
the example shown , the computation units of matrix pro 
cessor 107 can perform an arithmetic operation on the M 
operands and N operands from weight formatter 106 and 
data formatter 104 , respectively . In various embodiments , 
each computation unit is configured to perform one or more 
multiply , add , accumulate , and / or shift operations . In some 
embodiments , each computation unit is configured to per 
form a dot - product operation . For example , in some embodi 
ments , a computation unit may perform multiple dot - product 
component operations to calculate a dot - product result . For 
example , the array of computation units of matrix processor 
107 may be utilized to perform convolution steps required 
for performing inference using a machine learning model . A 
two - dimensional data set , such as an image , may be format 
ted and fed into matrix processor 107 using data formatter 
104 and data input 103 , one vector at a time . In parallel , a 
filter of weights may be applied to the two - dimensional data 
set by formatting the weights and feeding them as a vector 
into matrix processor 107 using weight formatter 106 and 
weight input 105 . Corresponding computation units of 
matrix processor 107 perform a matrix processor instruction 
on the corresponding operands of the weight and data inputs 
in parallel . 

[ 0027 ] In some embodiments , vector engine 111 is a 
vector computational unit that is communicatively coupled 
to matrix processor 107 . Vector engine 111 includes a 
plurality of processing elements including processing ele 
ment 113 . In the figure shown , the small squares inside 
vector engine 111 depict that vector engine 111 includes a 
plurality of processing elements arranged as a vector . In 
some embodiments , the processing elements are arranged in 
a vector in the same direction as data formatter 104 . In some 
embodiments , the processing elements are arranged in a 
vector in the same direction as weight formatter 106 . In 
various embodiments , the data size of the processing ele 
ments of vector engine 111 is the same size or larger than the 
data size of the computation units of matrix processor 107 . 
For example , in some embodiments , computation unit 109 
receives two operands each 1 byte in size and outputs a 
result 4 bytes in size . Processing element 113 receives the 
4 - byte result from computation unit 109 as an input 4 bytes 
in size . In various embodiments , the output of vector engine 
111 is the same size as the input to vector engine 111 . In 
some embodiments , the output of vector engine 111 is 
smaller in size compared to the input to vector engine 111 . 
For example , vector engine 111 may receive up to 96 
elements each 4 bytes in size and output 96 elements each 
1 byte in size . As described above , in some embodiments , 
the communication channel from data formatter 104 and 
weight formatter 106 to matrix processor 107 is 96 - elements 
wide with each element 1 byte in size and matches the output 
size of vector engine 111 ( 96 - elements wide with each 
element 1 byte in size ) . 
[ 0028 ] In some embodiments , the processing elements of 
vector engine 111 , including processing element 113 , each 
include an arithmetic logic unit ( ALU ) ( not shown ) . For 
example , in some embodiments , the ALU of each processing 
element is capable of performing arithmetic operations . In 
some embodiments , each ALU of the processing elements is 
capable of performing in parallel a rectified linear unit 
( ReLU ) function and / or scaling functions . In some embodi 
ments , each ALU is capable of performing a non - linear 
function including non - linear activation functions . In vari 
ous embodiments , each processing element of vector engine 
111 includes one or more flip - flops for receiving input 
operands . In some embodiments , each processing element 
has access to a slice of a vector engine accumulator and / or 
vector registers of vector engine 111 . For example , a vector 
engine capable of receiving 96 - elements includes a 96 - ele 
ment wide accumulator and one or more 96 - element vector 
registers . Each processing element has access to a one 
element slice of the accumulator and / or vector registers . In 
some embodiments , each element is 4 - bytes in size . In 
various embodiments , the accumulator and / or vector regis 
ters are sized to fit at least the size of an input data vector . 
In some embodiments , vector engine 111 includes additional 
vector registers sized to fit the output of vector engine 111 . 
[ 0029 ] In some embodiments , the processing elements of 
vector engine 111 are configured to receive data from matrix 
processor 107 and each of the processing elements can 
process the received portion of data in parallel . As one 
example of a processing element , processing element 113 of 
vector engine 111 receives data from computation unit 109 
of matrix processor 107 . In various embodiments , vector 
engine 111 receives a single vector processor instruction and 
in turn each of the processing elements performs the pro 
cessor instruction in parallel with the other processing 
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elements . In some embodiments , the processor instruction 
includes one or more component instructions , such as a load , 
a store , and / or an arithmetic logic unit operation . In various 
embodiments , a no - op operation may be used to replace a 
component instruction . 
[ 0030 ] In the example shown , the dotted arrows between 
data formatter 104 and matrix processor 107 , weight for 
matter 106 and matrix processor 107 , matrix processor 107 
and vector engine 111 , and vector engine 111 and post 
processing unit 115 depict couplings between the respective 
pairs of components that are capable of sending multiple 
data elements such as a vector of data elements . As an 
example , the communication channel between matrix pro 
cessor 107 and vector engine 111 may be 96x32 bits wide 
and support transferring 96 elements in parallel where each 
element is 32 bits in size . As another example , the commu 
nication channel between vector engine 111 and post - pro 
cessing unit 115 may be 96x1 byte wide and support 
transferring 96 elements in parallel where each element is 1 
byte in size . In various embodiments , data input 103 and 
weight input 105 are retrieved from a memory module ( not 
shown in FIG . 1 ) . In some embodiments , vector engine 111 
is additionally coupled to a memory module ( not shown in 
FIG . 1 ) and may receive input data from the memory module 
in addition or alternatively to input from matrix processor 
107 . In the various embodiments , a memory module is 
typically a static random access memory ( SRAM ) . 
[ 0031 ] In some embodiments , one or more computation 
units of matrix processor 107 may be grouped together into 
a lane such that matrix processor 107 has multiple lanes . In 
various embodiments , the lanes of matrix processor 107 may 
be aligned with either data formatter 104 or weight formatter 
106 . For example , a lane aligned with weight formatter 106 
includes a set of computation units that are configured to 
receive as input every operand of weight formatter 106 . 
Similarly , a lane aligned with data formatter 104 includes a 
set of computation units that are configured to receive as 
input every operand of data formatter 104 . In the example 
shown in FIG . 1 , the lanes are aligned along weight format 
ter 106 in a vertical column and each lane feeds to a 
corresponding lane of vector engine 111 . In some embodi 
ments , each lane is a vertical column of sub - circuits that 
include multiply , add and / or accumulate , and shift function 
ality . In some embodiments , matrix processor 107 includes 
a matrix of tiles and each tile is a matrix of computation 
units . For example , a 96x96 matrix processor may include a 
matrix of 6x6 tiles , where each tile includes 16x16 compu 
tation units . In some embodiments , a vertical lane is a single 
column of tiles . In some embodiments , a horizontal lane is 
a single row of tiles . In various embodiments , the dimen 
sions of the lane may be configured dynamically and may be 
utilized for performing alignment operations on the input to 
matrix processor 107 , vector engine 111 , and / or post - pro 
cessing unit 115 . In some embodiments , the dynamic con 
figuration is performed by or using control unit 101 and / or 
with using processor instructions and / or control signals 
controlled by control unit 101 . 
[ 0032 ] In some embodiments , control unit 101 synchro 
nizes the processing performed by data formatter 104 , 
weight formatter 106 , matrix processor 107 , vector engine 
111 , and post - processing unit 115 . For example , control unit 
101 may send processor specific control signals and / or 
instructions to each of data formatter 104 , weight formatter 
106 , matrix processor 107 , vector engine 111 , and post 

processing unit 115 . In some embodiments , a control signal 
is utilized instead of a processor instruction . Control unit 
101 may send matrix processor instructions to matrix pro 
cessor 107 . A matrix processor instruction may be a com 
putational array instruction that instructs a computational 
array to perform an arithmetic operation , such as a dot 
product or dot - product component , using specified operands 
from data input 103 and / or weight input 105 that are 
formatted by data formatter 104 and / or weight formatter 
106 , respectively . Control unit 101 may send vector proces 
sor instructions to vector engine 111 . For example , a vector 
processor instruction may include a single processor instruc 
tion with a plurality of component instructions to be 
executed together by the vector computational unit . Control 
unit 101 may send post - processing instructions to post 
processing unit 115 . In various embodiments , control unit 
101 synchronizes data that is fed to matrix processor 107 
from data formatter 104 and weight formatter 106 , to vector 
engine 111 from matrix processor 107 , and to post - process 
ing unit 115 from vector engine 111 . In some embodiments , 
control unit 101 synchronizes the data between different 
components of microprocessor system 100 including 
between data formatter 104 , weight formatter 106 , matrix 
processor 107 , vector engine 111 , and / or post - processing 
unit 115 by utilizing processor specific memory , queue , 
and / or dequeue operations and / or control signals . In some 
embodiments , data and instruction synchronization is per 
formed by control unit 101 . In some embodiments , data and 
instruction synchronization is performed by control unit 101 
that includes one or more sequencers to synchronize pro 
cessing between data formatter 104 , weight formatter 106 , 
matrix processor 107 , vector engine 111 , and / or post - pro 
cessing unit 115 . 
[ 0033 ] In some embodiments , data input 103 , data format 
ter 104 , weight input 105 , weight formatter 106 , matrix 
processor 107 , and vector engine 111 are utilized for pro 
cessing convolution layers . For example , matrix processor 
107 may be used to perform calculations associated with one 
or more convolution layers of a convolution neural network . 
Data formatter 104 and weight formatter 106 may be utilized 
to prepare matrix and / or vector data in a format for process 
ing by matrix processor 107 . Data input 103 may include 
image data such as one or more image channels captured by 
sensors ( not shown ) , where sensors include , as an example , 
cameras mounted to a vehicle . Weight input 105 may include 
weights determined by training a machine learning model 
for autonomous driving . In some embodiments , vector 
engine 111 is utilized for performing non - linear functions 
such as an activation function on the output of matrix 
processor 107 . For example , matrix processor 107 may be 
used to calculate a dot - product and vector engine 111 may be 
used to perform an activation function such as a rectified 
linear unit ( ReLU ) or sigmoid function . In some embodi 
ments , post - processing unit 115 is utilized for performing 
pooling operations . In some embodiments , post - processing 
unit 115 is utilized for formatting and storing the processed 
data to memory and may be utilized for synchronizing 
memory writing latency . 
[ 0034 ] FIG . 2 is a flow diagram illustrating an embodi 
ment of a process for performing machine learning process 
ing . In some embodiments , the process of FIG . 2 is utilized 
to implement a convolutional neural network using sensor 
input data such as images and learned weights . In various 
embodiments , the process of FIG . 2 may be repeated for 
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multiple convolution layers by using the output of the 
process of FIG . 2 as the input for the next convolution layer . 
In some embodiments , the processing is performed in the 
context of self - driving or driver - assisted vehicles to identify 
objects in a scene such as street signs , vehicles , pedestrians , 
and lane markers , among other objects . Other sensor data , 
including non - image sensor data , such as ultrasonic , radar , 
and LiDAR , may also be utilized as input data . In various 
embodiments , the process of FIG . 2 utilizes a microproces 
sor system such as is microprocessor system 100 of FIG . 1 . 
[ 0035 ] At 201 , input channels are received as input data to 
the microprocessor system . For example , vision data is 
captured using sensors and may include one or more chan 
nels corresponding to different color channels for the colors 
red , green , and blue . In various embodiments , multiple 
channels may be utilized as the different channels may 
contain different forms of information . As another example , 
non - sensor data may be utilized as input data . In various 
embodiments , the input channels may be loaded from 
memory via a cache using subsets of consecutively stored 
data in memory . In some embodiments , the input channels 
may be retrieved and / or formatted for processing using a 
hardware data formatter such as data formatter 104 of FIG . 

[ 00361 . At 203 , one or more filters are received for pro 
cessing the input channels . For example , a filter in the form 
of a matrix contains learned weights and is used to identify 
activations in the channels . In some embodiments , the filter 
is a square matrix kernel smaller than the input channel . In 
various embodiments , filters may be utilized to identify 
particular shapes , edges , lines , and other features and / or 
activations in the input data . In some embodiments , the 
filters and associated weights that make up the filter are 
created by training a machine learning model using a 
training corpus of data similar to the input data . In various 
embodiments , the received filters may be streamed from 
memory . In some embodiments , the filters may be retrieved 
and / or formatted for processing using a hardware data 
formatter such as weight formatter 106 of FIG . 1 . 
[ 0037 ] At 205 , one or more feature layers are determined 
using the received input channels and filters . In various 
embodiments , the feature layers are determined by perform 
ing one or more convolution operations using a computa 
tional array such as matrix processor 107 of FIG . 1 . In some 
embodiments , the one or more output feature layers are 
determined by repeatedly performing a dot - product between 
different small regions of an input channel and the weights 
of the filter . In various embodiments , each filter is used to 
create a single feature layer by performing a two - dimen 
sional convolution using the filter . In some embodiments , 
the input data is padded to adjust for the size of the output 
feature layer . In various embodiments , a stride parameter is 
utilized and may impact the size of the output feature layer . 
In various embodiments , a bias parameter may be utilized . 
For example , a bias term may be added to the resulting 
values of convolution for each element of a feature layer . 
[ 0038 ] At 207 , an activation function is performed on one 
or more feature layers . For example , an element - wise acti 
vation function , such as a rectified linear unit ( ReLU ) . 
function , is performed using a vector processor such as 
vector engine 111 of FIG . 1 to create an activation layer . In 
various embodiments , different activation functions , such as 

a non - linear activation function , including ReLU and sig 
moid , may be utilized to create an activation layer for each 
feature layer . 
00391 . At 209 , pooling is performed on the activation 
layers created at 207 . For example , a pooling layer is 
generated by a post - processing unit such as post - processing 
unit 115 of FIG . 1 using the activation layer generated at 
207 . In some embodiments , the pooling layer is generated to 
down sample the activation layer . In various embodiments , 
different filter sizes may be utilized to create a pooling layer 
based on the desired output size . In various embodiments , 
different pooling techniques , such as maxpooling , are uti 
lized . In various embodiments , pooling parameters include 
kernel size , stride , and / or spatial extent , among others . In 
some embodiments , the pooling layer is an optional layer 
and may be implemented when appropriate . 
0040 ) In various embodiments , the process of FIG . 2 is 
utilized for each layer of a convolution neural network 
( CNN ) . Multiple passes of the process of FIG . 2 may be 
utilized to implement a multi - layer CNN . For example , the 
output of 209 may be utilized as input channels at 201 to 
calculate output layers of an intermediate layer . In some 
embodiments , a CNN is connected to one or more additional 
non - CNN layers for classification , object detection , object 
segmentation , and / or other appropriate goals . In some 
embodiments , the additional non - CNN layers are imple 
mented using a microprocessor system such as is micropro 
cessor system 100 of FIG . 1 . 
[ 0041 ] FIG . 3 is a flow diagram illustrating an embodi 
ment of a process for performing machine learning process 
ing . In some embodiments , the process of FIG . 3 is utilized 
to perform inference on sensor data by performing compu 
tational operations , such as convolution operations , and 
element - wise activation functions . In some embodiments , 
the process of FIG . 3 is performed using a microprocessor 
system such as is microprocessor system 100 of FIG . 1 . In 
various embodiments , steps 301 and 303 are performed at 
201 of FIG . 2 using data input 103 and data formatter 104 
of FIG . 1 , steps 305 and 307 are performed at 203 of FIG . 
2 using weight input 105 and weight formatter 106 of FIG . 
1 , step 309 is performed at 205 of FIG . 2 using matrix 
processor 107 of FIG . 1 , step 311 is performed at 207 of FIG . 
2 using vector engine 111 of FIG . 1 , and step 313 is 
performed at 209 of FIG . 2 using post - processing unit 115 
of FIG . 1 . 
[ 0042 ] At 301 , data input is received . For example , data 
input corresponding to sensor data is received by a hardware 
data formatter for formatting . In some embodiments , data 
input is data input 103 of FIG . 1 and is received by data 
formatter 104 of FIG . 1 . In various embodiments , a hard 
ware data formatter requests the data input from memory as 
read requests based on subsets of values stored consecu 
tively in memory . For example , a hardware data formatter 
may first check a cache of the memory for the requested data 
values and in the event of a cache miss , the read request will 
retrieve the data values from memory . In various embodi 
ments , checking for a cache hit or miss requires calculating 
the start address and end address of the subset of requested 
data values . In some embodiments , a data request populates 
the cache with the requested values along with additional 
data to fill a cache line . In some embodiments , the data is 
streamed in from memory and may bypass the cache . 
[ 0043 ] At 303 , data input is formatted using a hardware 
data formatter . For example , a hardware data formatter such 
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as data formatter 104 of FIG . 1 formats the received data 
input for processing by a computational array such as matrix 
processor 107 of FIG . 1 . The hardware data formatter may 
format the received data input into an input vector of 
operands for a computational array . In some embodiments , 
the hardware data formatter further performed the requesting 
of data received at 301 . In some embodiments , the hardware 
data formatter will format at least one of the operands of a 
convolution operation . For example , each two - dimensional 
region corresponding to an input channel of vision data for 
a convolution operation involving a filter will be formatted 
by the hardware data formatter into a vector operand for the 
computational array . The vectors corresponding to the 
regions are grouped together by their n - th elements and fed 
to the computation array at a rate of at most one element 
from each vector per clock cycle . In some embodiments , the 
hardware data formatter will select the appropriate elements 
for performing convolution of a filter with the data input by 
formatting each region of the data input into a vector and 
feeding each element of the appropriate vector to a corre 
sponding computation unit of a computational array . In some 
embodiments , a bias parameter is introduced using the 
hardware data formatter . 
[ 0044 ] At 305 , weight input is received . For example , 
weight input corresponding to machine learning weights of 
a filter are received by a hardware data formatter for 
formatting . In some embodiments , weight input is weight 
input 105 of FIG . 1 and is received by weight formatter 106 
of FIG . 1 . In various embodiments , a hardware data format 
ter requests the weight input from memory as read requests 
based on subsets of values stored consecutively in memory . 
For example , a hardware data formatter may first check a 
cache of the memory for the requested weight values and in 
the event of a cache miss , the read request will retrieve the 
weight values from memory . In various embodiments , 
checking for a cache hit or miss requires calculating the start 
address and end address of the subset of requested weight 
values . In some embodiments , a weight data request popu 
lates the cache with the requested weight values . In some 
embodiments , the data for weights is streamed in from 
memory and may bypass the cache . In some embodiments , 
the weight input includes a bias parameter . 
[ 0045 ] At 307 , weight input is formatted using a hardware 
data formatter . For example , a hardware data formatter such 
as weight formatter 106 of FIG . 1 formats the received 
weight input for processing by a computational array such as 
matrix processor 107 of FIG . 1 . The hardware data formatter 
may format the received weight input into an input vector of 
operands for a computational array . In some embodiments , 
the hardware data formatter further performed the requesting 
of data received at 305 . In some embodiments , the hardware 
data formatter will format at least one of the operands of a 
convolution operation . For example , a filter for a convolu 
tion operation will be formatted by the hardware data 
formatter into a vector operand for the computational array . 
In some embodiments , the hardware data formatter will 
select the appropriate elements for performing convolution 
of a filter with the data input by formatting the filter into a 
vector and feeding each element of the vector to a corre 
sponding computation unit of a computational array . In some 
embodiments , a bias parameter is introduced using the 
hardware data formatter . 
[ 0046 ] At 309 , matrix processing is performed . For 
example , the operands formatted at 303 and 307 are received 

by each of the computation units of a computational array 
for processing . In some embodiments , the matrix processing 
is performed using a matrix processor such as matrix pro 
cessor 107 of FIG . 1 . In some embodiments , a dot - product 
is performed at each appropriate computation unit of the 
computational array using respective vectors received by 
hardware data formatters such as data formatter 104 and 
weight formatter 106 of FIG . 1 . In some embodiments , only 
a subset of the matrix processor ' s computation units is 
utilized . For example , a computational array with 96x96 
computation units may utilize only 64x64 computation units 
in the event the data input is 64 vectors and the weight input 
is 64 vectors . In various embodiments , the number of 
computation units utilized is based on the size on the data 
input and / or weight input . In some embodiments , the com 
putation units each perform one or more of multiply , add , 
accumulate , and / or shift operations . In some embodiments , 
the computation units each perform one or more of multiply , 
add , accumulate , and / or shift operations each clock cycle . In 
some embodiments , a bias parameter is received and added 
to the calculated dot - product as part of the matrix processing 
performed . 
[ 0047 ] At 311 , vector processing is performed . For 
example , an element - wise activation function may be per 
formed on the result of the matrix processing performed at 
309 . In some embodiments , an activation function is a 
non - linear activation function such as a rectified linear unit 
( ReLU ) , sigmoid , or other appropriate function . In some 
embodiments , the vector processor is utilized to implement 
scaling , normalization , or other appropriate techniques . For 
example , a bias parameter may be introduced to the result of 
a dot - product using the vector processor . In some embodi 
ments , the result of 311 is a series of activation maps or 
activation layers . In some embodiments , vector processing is 
performed using a vector engine such as vector engine 111 
of FIG . 1 . 
[ 0048 ] At 313 , post - processing is performed . For example , 
a pooling layer may be implemented using a post - processing 
processor such as post - processing unit 115 of FIG . 1 . In 
various embodiments , different post - processing techniques , 
including different pooling techniques such as maxpooling , 
may be implemented during the post - processing stage of 
313 . 
[ 0049 ] In various embodiments , the process of FIG . 3 is 
utilized for each layer of a convolution neural network 
( CNN ) . Multiple passes of the process of FIG . 3 may be 
utilized to implement a multi - layer CNN . For example , the 
output of 313 may be utilized as data input for step 301 . In 
some embodiments , the process of FIG . 3 must be repeated 
one or more times to complete a single layer . For example , 
in the scenario where the sensor data is larger in dimension 
than the number of computation units of the computational 
array , the sensor data may be sliced into smaller regions that 
fit the computational array and the process of FIG . 3 is 
repeated on each of the sliced regions . 
[ 0050 ] FIG . 4 is a block diagram illustrating an embodi 
ment of a computation unit of a computational array . In the 
example shown , computation unit 400 includes input values 
weight 402 , data 404 , and ResultIn 406 ; signals ClearAcc 
signal 408 , Clock signal 410 , ResultEnable signal 412 , 
ResultCapture signal 414 , and ShiftEn signal 416 ; compo 
nents accumulator 424 , multiplexer 426 , shadow register 
428 , multiplier 430 , and adder 432 ; logic 434 , 436 , and 438 ; 
and output value ResultOut 450 . In some embodiments , 
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logic 434 , 436 , and 438 are AND gates . In some embodi 
ments , additional signals are included as appropriate . In 
various embodiments , the computation unit of FIG . 4 is 
repeated for each of the plurality of computation units , such 
as computation unit 109 , of a computation array such as 
matrix processor 107 of FIG . 1 . Computation unit 400 may 
be utilized to implement computational operations in paral 
lel . In various embodiments , each computation unit of a 
computational array performs computations in parallel with 
the other computation units . In various embodiments , com 
putation unit 400 is a sub - circuit of a matrix processor that 
includes the functionality for performing one or more mul 
tiply , add , accumulate , and / or shift operations . For example , 
computation unit 400 may be a sub - circuit that includes the 
functionality for performing a dot - product operation . 
10051 ] In some embodiments , Clock signal 410 is a clock 
signal received by computation unit 400 . In various embodi 
ments , each computation unit of the computational array 
receives the same clock signal and the clock signal is utilized 
to synchronize the processing of each computation unit with 
the other computation units . 
[ 0052 ] In the example shown , multiplier 430 receives and 
performs a multiplication operation on the input values data 
404 and weight 402 . The output of multiplier 430 is fed to 
adder 432 . Adder 432 receives and performs an addition on 
the output of multiplier 430 and the output of logic 434 . The 
output of adder 432 is fed to accumulator 424 . In some 
embodiments , input values data 404 and weight 402 are lines 
that cross computation units and feed the corresponding data 
and / or weight to neighboring computation units . For 
example , in some embodiments , data 404 is fed to all 
computation units in the same column and weight 402 is fed 
to all computation units in the same row . In various embodi 
ments , data 404 and weight 402 correspond to input ele 
ments fed to computation unit 400 from a data hardware data 
formatter and a weight hardware data formatter , respec 
tively . In some embodiments , the data hardware data for 
matter and the weight hardware data formatter are data 
formatter 104 and weight formatter 106 of FIG . 1 , respec 
tively . 
[ 0053 ] In some embodiments , ClearAcc signal 408 clears 
the contents of accumulator 424 . As an example , accumu 
lation operations can be reset by clearing accumulator 424 
and used to accumulate the result of multiplier 430 . In some 
embodiments , ClearAcc signal 408 is used to clear accumu 
lator 424 for performing a new dot - product operation . For 
example , elements - wise multiplications are performed by 
multiplier 430 and the partial - dot - product results are added 
using adder 432 and accumulator 424 . 
[ 0054 ] In various embodiments , accumulator 424 is an 
accumulator capable of accumulating the result of adder 432 
and indirectly the result of multiplier 430 . For example , in 
some embodiments , accumulator 424 is configured to accu 
mulate the result of multiplier 430 with the contents of 
accumulator 424 based on the status of ClearAcc signal 408 . 
As another example , based on the status of ClearAcc signal 
408 , the current result stored in accumulator 424 may be 
ignored by adder 432 . In the example shown , accumulator 
424 is a 32 - bit wide accumulator . In various embodiments , 
accumulator 424 may be sized differently , e . g . , 8 - bits , 
16 - bits , 64 - bits , etc . , as appropriate . In various embodi 
ments , each accumulator of the plurality of computation 
units of a computational array is the same size . In various 
embodiments , accumulator 424 may accumulate and save 

data , accumulate and clear data , or just clear data . In some 
embodiments , accumulator 424 may be implemented as an 
accumulation register . In some embodiments , accumulator 
424 may include a set of arithmetic logic units ( ALUS ) that 
include registers . 
[ 0055 ] In some embodiments , ResultEnable signal 412 is 
activated in response to a determination that data 404 is 
valid . For example , ResultEnable signal 412 may be enabled 
to enable processing by a computation unit such as process 
ing by multiplier 430 and adder 432 into accumulator 424 . 
[ 0056 ] In some embodiments , ResultCapture signal 414 is 
utilized to determine the functionality of multiplexer 426 . 
Multiplexer 426 receives as input ResultIn 406 , output of 
accumulator 424 , and ResultCapture signal 414 . In various 
embodiments , ResultCapture signal 414 is used to enable 
either ResultIn 406 or the output of accumulator 424 to pass 
through as the output of multiplexer 426 . In some embodi 
ments , multiplexer 426 is implemented as an output register . 
In some embodiments , ResultIn 406 is connected to a 
computation unit in the same column as computation unit 
400 . For example , the output of a neighboring computation 
unit is fed in as an input value ResultIn 406 to computation 
unit 400 . In some embodiments , the input of a neighboring 
computation unit is the computation unit ' s corresponding 
ResultOut value . 
10057 ] In some embodiments , shadow register 428 
receives as input the output of multiplexer 426 . In some 
embodiments , shadow register 428 is configured to receive 
the output of accumulator 424 via multiplexer 426 depend 
ing on the value of ResultCapture signal 414 . In the example 
shown , the output of shadow register 428 is output value 
ResultOut 450 . In various embodiments , once a result is 
inserted into shadow register 428 , accumulator 424 may be 
used to commence new calculations . For example , once the 
final dot - product result is stored in shadow register 428 , 
accumulator 424 may be cleared and used to accumulate and 
store the partial result and eventually the final result of a new 
dot - product operation on new weight and data input values . 
In the example shown , shadow register 428 receives a signal 
ShiftEn signal 416 . In various embodiments , ShiftEn signal 
416 is used to enable or disable the storing of values in the 
shadow register 428 . In some embodiments , ShiftEn signal 
416 is used to shift the value stored in shadow register 428 
to output value ResultOut 450 . For example , when ShiftEn 
signal 416 is enabled , the value stored in shadow register 
428 is shifted out of shadow register 428 as output value 
ResultOut 450 . In some embodiments , ResultOut 450 is 
connected to a neighboring computation unit ' s input value 
Resultin . In some embodiments , the last cell of a column of 
computation units is connected to the output of the compu 
tational array . In various embodiments , the output of the 
computational array feeds into a vector engine such as 
vector engine 111 of FIG . 1 for vector processing . For 
example , the output ResultOut 450 of a computation cell 
such as computation cell 109 of FIG . 1 may be fed into a 
processing element of a vector engine such as processing 
element 113 of vector engine 111 of FIG . 1 . 
[ 0058 ] In the example shown , shadow register 428 is 
32 - bits wide . In various embodiments , shadow register 428 
may be sized differently , e . g . , 8 - bits , 16 - bits , 64 - bits , etc . , as 
appropriate . In various embodiments , each shadow register 
of the plurality of computation units of a computational 
array is the same size . In various embodiments , shadow 
register 428 is the same size as accumulator 424 . In various 
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embodiments , the size of multiplexer 426 is based on the 
size of accumulator 424 and / or shadow register 428 ( e . g . , the 
same size or larger ) . 
[ 0059 ] In some embodiments , logic 434 , 436 , and 438 
receive signals , such as control signals , to enable and / or 
configure the functionality of computation unit 400 . In 
various embodiments , logic 434 , 436 , and 438 are imple 
mented using AND gates and / or functionality corresponding 
to an AND gate . For example , as described above , logic 434 
receives ClearAcc signal 408 and an input value correspond 
ing to the value stored in accumulator 424 . Based on 
ClearAcc signal 408 , the output of logic 434 is determined 
and fed to adder 432 . As another example , logic 436 receives 
ResultEnable signal 412 and Clock signal 410 . Based on 
ResultEnable signal 412 , the output of logic 436 is deter 
mined and fed to accumulator 424 . As another example , 
logic 438 receives ShiftEn signal 416 and Clock signal 410 . 
Based on ShiftEn signal 416 , the output of logic 438 is 
determined and fed to shadow register 428 . 
[ 0060 ] In various embodiments , computation units may 
perform a multiplication , an addition operation , and a shift 
operation at the same time , i . e . , within a single cycle , 
thereby doubling the total number of operations that occur 
each cycle . In some embodiments , results are moved from 
multiplexer 426 to shadow register 428 in a single clock 
cycle , i . e . , without the need of intermediate execute and save 
operations . In various embodiments , the clock cycle is based 
on the signal received at Clock signal 410 . 
[ 0061 ] In various embodiments , input values weight 402 
and data 404 are 8 - bit values . In some embodiments , weight 
402 is a signed value and data 404 is unsigned . In various 
embodiments , weight 402 and data 404 may be signed or 
unsigned , as appropriate . In some embodiments , Resultin 
406 and ResultOut 450 are 32 - bit values . In various embodi 
ments ResultIn 406 and ResultOut 450 are implemented 
using a larger number of bits than input operands weight 402 
and data 404 . By utilizing a large number of bits , the results 
of multiplying multiple pairs of weight 402 and data 404 , for 
example , to calculate a dot - product result , may be accumu 
lated without overflowing the scalar result . 
[ 0062 ] In some embodiments , computation unit 400 gen 
erates an intermediate and / or final computation result in 
accumulator 424 . The final computation result is then stored 
in shadow register 428 via multiplexer 426 . In some embodi 
ments , multiplexer 426 functions as an output register and 
store the output of accumulator 424 . In various embodi 
ments , the final computation result is the result of a convo 
lution operation . For example , the final result at ResultOut 
450 is the result of convolution between a filter received by 
computation unit 400 as input values using weight 402 and 
a two - dimensional region of sensor data received by com 
putation unit 400 as input values using data 404 . 
[ 0063 ] As an example , a convolution operation may be 
performed using computation unit 400 on a 2x2 data input 
matrix [ do dl ; d2 d3 ] corresponding to a region of sensor 
data and a filter corresponding to a 2x2 matrix of weights 
Wo wl ; w2 w3 ) . The 2x2 data input matrix has a first row 
[ do d1 ] and a second row [ d2 d3 ] . The filter matrix has a first 
row [ w0 wl ] and a second row [ W2 w3 ] . In various 
embodiments , computation unit 400 receives the data matrix 
via data 404 as a one - dimensional input vector [ do di d2 d3 ] 
one element per clock cycle and weight matrix via weight 
402 as a one - dimensional input vector ?w0 wl w2 w3 ] one 
element per clock cycle . Using computation unit 400 , the dot 

product of the two input vectors is performed to produce a 
scalar result at ResultOut 450 . For example , multiplier 430 
is used to multiply each corresponding element of the input 
weight and data vectors and the results are stored and added 
to previous results in accumulator 424 . For example , the 
result of element d0 multiplied by element wo ( e . g . , d0 * w0 ) 
is first stored in cleared accumulator 424 . Next , element di 
is multiplied by element wl and added using adder 432 to 
the previous result stored in accumulator 424 ( e . g . , d0 * w0 ) 
to compute the equivalent of d0 * wO + d1 * w1 . Processing 
continues to the third pair of elements d2 and w2 to compute 
the equivalent of d0 * w0 + d1 * wl + d2 * w2 at accumulator 
424 . The last pair of elements is multiplied and the final 
result of the dot product is now stored in accumulator 424 
( e . g . , d0 * wO + d1 * w1 + d2 * w2 + d3 * w3 ) . The dot - product 
result is then copied to shadow register 428 . Once stored in 
shadow register 428 , a new dot - product operation may be 
initiated , for example , using a different region of sensor data . 
Based on ShiftEn signal 416 , the dot - product result stored in 
shadow register 428 is shifted out of shadow register 428 to 
ResultOut 450 . In various embodiments , the weight and data 
matrices may be different dimensions than the example 
above . For example , larger dimensions may be used . 
[ 0064 . In some embodiments , a bias parameter is intro 
duced and added to the dot - product result using accumulator 
424 . In some embodiments , the bias parameter is received as 
input at either weight 402 or data 404 along with a multi 
plication identity element as the other input value . The bias 
parameter is multiplied against the identity element to 
preserve the bias parameter and the multiplication result 
( e . g . , the bias parameter ) is added to the dot - product result 
using adder 432 . The addition result , a dot - product result 
offset by a bias value , is stored in accumulator 424 and later 
shifted out at ResultOut 450 using shadow register 428 . In 
some embodiments , a bias is introduced using a vector 
engine such as vector engine 111 of FIG . 1 . 
[ 0065 ] FIG . 5 is a block diagram illustrating an embodi 
ment of a cache - enabled microprocessor system for per 
forming machine learning processing . The microprocessor 
system of FIG . 5 includes hardware data formatters that 
interface with a cache to prepare input values for a compu 
tational array such as a matrix processor . In various embodi 
ments , incorporating a memory cache and using hardware 
data formatters to populate the cache increases the through 
put of the matrix processor and allows the microprocessor 
system to operate at a higher clock rate than would otherwise 
be allowed . In the example shown , microprocessor system 
500 includes control unit 501 , memory 502 , cache 503 , data 
formatter 504 , weight formatter 506 , and matrix processor 
507 . Input data and weight data are retrieved by hardware 
data formatters 504 , 506 from memory 502 via cache 503 . 
The retrieved input values are formatted using data formatter 
504 and weight formatter 506 to prepare vector operands for 
matrix processor 507 . In some embodiments , data formatter 
504 and weight formatter 506 include a logic circuit for 
preparing data for matrix processor 507 and / or a memory 
cache or buffer for storing and processing input data . For 
example , data formatter 504 may prepare N operands from 
a two - dimensional array retrieved from memory 502 via 
cache 503 . Weight formatter 506 may prepare M operands 
retrieved from memory 502 via cache 503 that correspond to 
weight values . Data formatter 504 and weight formatter 506 
prepare the N and M operands to be processed by matrix 
processor 507 . 
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100661 In various embodiments , microprocessor system 
500 is microprocessor system 100 of FIG . 1 depicted with a 
memory and memory cache . With respect to microprocessor 
100 of FIG . 1 , in various embodiments , control unit 501 is 
control unit 101 , data formatter 504 is data formatter 104 , 
weight formatter 506 is weight formatter 106 , and matrix 
processor 507 is matrix processor 107 of FIG . 1 . Further , 
with respect to microprocessor 100 of FIG . 1 , in various 
embodiments , data input 103 and weight input 105 of FIG . 
1 are retrieved from memory 502 via cache 503 . In some 
embodiments , microprocessor system 500 , including at least 
hardware data formatter 504 , weight formatter 506 , and 
matrix processor 507 , performs the processes described with 
respect to FIGS . 7 and 8 and portions of processes described 
with respect to FIGS . 2 and 3 . 
[ 0067 ] In some embodiments , matrix processor 507 is a 
computational array that includes a plurality of computation 
units . For example , a matrix processor receiving M operands 
and N operands from weight formatter 506 and data for 
matter 504 , respectively , includes MxN computation units . 
In the figure shown , the small squares inside matrix proces 
sor 507 depict that matrix processor 507 includes a logical 
two - dimensional array of computation units . Computation 
unit 509 is one of a plurality of computation units of matrix 
processor 507 . In some embodiments , each computation unit 
is configured to receive one operand from data formatter 504 
and one operand from weight formatter 506 . Matrix proces 
sor 507 and computation unit 509 are described in further 
detail with respect to matrix processor 107 and computation 
unit 109 , respectively , of FIG . 1 . Input values to matrix 
processor 507 are received from data formatter 504 and 
weight formatter 506 and described in further detail with 
respect to inputs from data formatter 104 and weight for 
matter 106 to matrix processor 107 of FIG . 1 . 
[ 0068 ] In the example shown , the dotted arrows between 
data formatter 504 and matrix processor 507 and between 
weight formatter 506 and matrix processor 507 depict a 
coupling between the respective pairs of components that 
are capable of sending multiple data elements such as a 
vector of data elements . In various embodiments , the data 
width of components data formatter 504 , weight formatter 
506 , and matrix processor 507 are wide data widths and 
include the ability to transfer more than one operand in 
parallel . The data widths of components data formatter 504 , 
weight formatter 506 , and matrix processor 507 are 
described in further detail with respect to corresponding 
components data formatter 104 , weight formatter 106 , and 
matrix processor 107 of FIG . 1 . 
[ 0069 ] In various embodiments , the arrows in FIG . 5 
describe the direction data and / or control signals flow from 
component to component . In some embodiments , the con 
nections depicted by the one - direction arrows in FIG . 5 ( e . g . , 
between data formatter 504 and cache 503 , between weight 
formatter 506 and cache 503 , and between cache 503 and 
memory 502 ) may be bi - directional and thus the data and / or 
control signals may flow in both directions . For example , in 
some embodiments , control signals , such as a read request 
and / or data , can flow from cache 503 to memory 502 . 
[ 0070 ] In various embodiments , memory 502 is typically 
static random access memory ( SRAM ) . In some embodi 
ments , memory 502 has a single read port or a limited 
number of read ports . In some embodiments , the amount of 
memory 502 dedicated to storing data ( e . g . , sensor data , 
image data , etc . ) , weights ( e . g . , weight associated with 

image filters , etc . ) , and / or other data may be dynamically 
allocated . For example , memory 502 may be configured to 
partition more or less memory for data input compared to 
weight input based on a particular workload . In some 
embodiments , cache 503 includes one or more cache lines . 
For example , in some embodiments , cache 503 is a 1 KB 
cache that includes four cache lines where each cache line is 
256 bytes . In various embodiments , the size of the cache 
may be larger or small , with fewer or more cache lines , have 
larger or smaller cache lines , and may be determined based 
on expected computation workload . 
10071 ] In various embodiments , hardware data formatters 
( e . g . , data formatter 504 and weight formatter 506 ) calculate 
memory addresses to retrieve input values from memory 502 
and cache 503 for processing by matrix processor 507 . In 
some embodiments , data formatter 504 and / or weight for 
matter 506 stream data corresponding to a subset of values 
stored consecutively in memory 502 and / or cache 503 . Data 
formatter 504 and / or weight formatter 506 may retrieve one 
or more subsets of values stored consecutively in memory 
and prepare the data as input values for matrix processor 
507 . In various embodiments , the one or more subsets of 
values are not themselves stored consecutively in memory 
with other subsets . In some embodiments , memory 502 
contains a single read port . In some embodiments , memory 
502 contains a limited number of read ports and the number 
of read ports is fewer than the data width of components data 
formatter 504 , weight formatter 506 , and matrix processor 
507 . In some embodiments , hardware data formatters 504 , 
506 will perform a cache check to determine whether a 
subset of values is in cache 503 prior to issuing a read 
request to memory 502 . In the event the subset of values is 
cached , hardware data formatters 504 , 506 will retrieve the 
data from cache 503 . In various embodiments , in the event 
of a cache miss , hardware data formatters 504 , 506 will 
retrieve the entire subset of values from memory 502 and 
populate a cache line of cache 503 with the retrieved values . 
[ 0072 In some embodiments , control unit 501 initiates 
and synchronizes processing between components of micro 
processor system 500 , including components memory 502 , 
data formatter 504 , weight formatter 506 , and matrix pro 
cessor 507 . In some embodiments , control unit 501 coordi 
nates access to memory 502 including the issuance of read 
requests . In some embodiments , control unit 501 interfaces 
with memory 502 to initiate read requests . In various 
embodiments , the read requests are initiated by hardware 
data formatters 504 , 506 via the control unit 501 . In various 
embodiments , control unit 501 synchronizes data that is fed 
to matrix processor 507 from data formatter 504 and weight 
formatter 506 . In some embodiments , control unit 501 
synchronizes the data between different components of 
microprocessor system 500 including between data format 
ter 504 , weight formatter 506 , and matrix processor 507 , by 
utilizing processor specific memory , queue , and / or dequeue 
operations and / or control signals . Additional functionality 
performed by control unit 501 is described in further detail 
with respect to control unit 101 of FIG . 1 . 
[ 0073 ] In some embodiments , microprocessor system 500 
is utilized for performing convolution operations . For 
example , matrix processor 507 may be used to perform 
calculations , including dot - product operations , associated 
with one or more convolution layers of a convolution neural 
network . Data formatter 504 and weight formatter 506 may 
be utilized to prepare matrix and / or vector data in a format 
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for processing by matrix processor 507 . Memory 502 may 
be utilized to store data such as one or more image channels 
captured by sensors ( not shown ) . Memory 502 may also 
include weights , including weights in the context of convo 
lution filters , determined by training a machine learning 
model for autonomous driving . 
[ 0074 ] In various embodiments , microprocessor system 
500 may include additional components ( not shown in FIG . 
5 ) , including processing components , such as a vector 
processor and a post - processing unit . An example of a vector 
processor and its associated functionality is vector engine 
111 of FIG . 1 . An example of a post - processing unit and its 
associated functionality is post - processing unit 115 of FIG . 

[ 0075 ] FIG . 6 is a block diagram illustrating an embodi 
ment of a hardware data formatter , cache , and memory 
components of a microprocessor system . In the example 
shown , the components include memory 601 , cache 603 , 
and hardware data formatter 605 . Memory 601 is commu 
nicatively connected to cache 603 and cache 603 is com 
municatively connected to hardware data formatter 605 . 
Cache 603 includes four cache lines 611 , 613 , 615 , and 617 . 
Hardware data formatter 605 includes twelve read buffers 
621 - 632 . Read buffers 621 - 632 are each 8 - byte read buffers . 
In various embodiments , the number of and size of the read 
buffers may be fewer or more than depicted in the embodi 
ment of FIG . 6 . For example , read buffers 621 - 632 are sized 
to accommodate a 96 element input vector , where each 
element is 1 - byte , to a computational array . In various 
embodiments , read buffers 621 - 632 may be implemented as 
a single wide register , a single memory storage location , 
individual registers , or individual memory storage locations , 
among other implementations , as appropriate . In some 
embodiments , memory 601 and cache 603 are memory 502 
and cache 503 of FIG . 5 , respectively . In some embodi 
ments , hardware data formatter 605 is data formatter 104 
and / or weight formatter 106 of FIG . 1 . In some embodi 
ments , hardware data formatter 605 is data formatter 504 
and / or weight formatter 506 of FIG . 5 . 
[ 0076 ] In various embodiments , a control unit ( not shown ) 
such as control unit 101 of FIG . 1 and a computational array 
( not shown ) such as matrix processor 107 of FIG . 1 are 
components of the microprocessor system . For example , a 
control unit sends signals to synchronize the processing of 
computational operations and / or access to memory 601 . In 
various embodiments , a computational array receives input 
vectors from one or more hardware data formatters as input 
operands . For example , a matrix processor may receive two 
vector inputs , one from a data formatter and one from a 
weight formatter , to perform matrix processing on . As 
another example , a matrix processor may receive two matri 
ces , one from a data formatter and one from a weight 
formatter , to perform matrix processing on . In various 
embodiments , multiple clock cycles are needed to feed an 
entire matrix into a computational array . For example , in 
some embodiments , at most one row ( and / or column ) of a 
matrix is fed into a computational array each clock cycle . 
[ 0077 ] In various embodiments , the output of hardware 
data formatter 605 is fed as input to a computational array 
such as matrix processor 107 of FIG . 1 and matrix processor 
507 of FIG . 5 . In various embodiments , each element of 
each read buffer of hardware data formatter 605 is fed into 
a computation unit of a computational array . For example , 
the first byte of read buffer 621 is fed into a first computation 

unit of a computational array , the second byte of read buffer 
621 is fed into a second computation unit of a computational 
array , the third byte of read buffer 621 is fed into a third 
computation unit of a computational array , and so forth , with 
the last byte of read buffer 621 ( i . e . , the eighth byte ) feeding 
into the eighth computation unit of a computational array . 
The next read buffer then feeds its elements into the next set 
of computation units . For example , the first byte of read 
buffer 622 is fed into a ninth computation unit of a compu 
tational array and the last byte of read buffer 632 is fed into 
a ninety - sixth computation unit of a computational array . In 
various embodiments , the size and number of the read 
buffers and the number of computation units may vary . As 
explained above , in the example shown , hardware data 
formatter 605 includes 12 read buffers 621 - 632 configured 
to each store eight consecutive bytes . Hardware data for 
matter 605 may be configured to feed into a computation 
unit that may receive at least one input vector of 96 1 - byte 
elements . 
[ 0078 ] In some embodiments , only a portion of the ele 
ments in read buffers 621 - 632 is utilized as input to a 
computational array . For example , a two - dimensional 80x80 
matrix may only utilize read buffers 621 - 630 ( corresponding 
to 80 bytes , numbered bytes 0 - 79 ) to feed an 80 - element row 
into a matrix processor . In various embodiments , hardware 
data formatter 605 may perform additional processing on 
one or more elements of read buffers 621 - 632 to prepare the 
elements as input to a computational array . For example , a 
computational array may be configured to receive 48 16 - bit 
elements instead of 96 8 - bit elements and hardware data 
formatter 605 may be configured to combine pairs of 1 - byte 
elements to form 16 - bit elements to prepare a 48 16 - bit input 
vector for the computational array . 
10079 ] In various embodiments , cache 603 is a memory 
cache of memory 601 . In some embodiments , memory 601 
is implemented using static random access memory 
( SRAM ) . In some embodiments , cache 603 is a 1 KB 
memory cache and each cache line 611 , 613 , 615 , and 617 
is 256 bytes . In various embodiments , reading data into 
cache 603 loads an entire cache line of data into one of cache 
lines 611 , 613 , 615 , and 617 . In various embodiments , cache 
603 may be larger or small and have fewer or more cache 
lines . Moreover , in various embodiments , the cache lines 
may be a different size . The size and configuration of cache 
603 , cache lines 611 , 613 , 615 , and 617 , and memory 601 
may be sized as appropriate for the particular workload of 
computational operations . For example , the size and number 
of image filters used for convolution may dictate a larger or 
smaller cache line and a larger or smaller cache . 
[ 0080 ] In the example shown , the dotted - lined arrows 
originating from read buffers 621 - 632 indicate whether the 
data requested by hardware data formatter 605 exists as a 
valid entry in cache 603 and in particular which cache line 
holds the data . For example , read buffers 621 , 622 , and 623 
request data that is found in cache line 611 . Read buffers 626 
and 627 request data that is found in cache line 613 and read 
buffers 630 , 631 , and 632 request data that is found in cache 
line 617 . In various embodiments , each read buffer stores a 
subset of values located consecutively in the memory . The 
subsets of values stored at read buffers 621 , 622 , and 623 
may not be located consecutively in memory with the 
subsets of values stored at read buffers 626 and 627 and also 
may not be located consecutively in memory with the 
subsets of values stored at read buffers 630 , 631 , and 632 . In 
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some scenarios , read buffers referencing the same cache line 
may store subsets of values that are not located consecu 
tively in memory . For example , two read buffers may 
reference the same cache line of 256 bytes but different 
8 - byte subsets of consecutive values . 
[ 0081 ] In the example shown , the data requested for read 
buffers 624 , 625 , 628 , and 629 are not found in cache 603 
and are cache misses . In the example shown , an “ X ” depicts 
a cache miss . In various embodiments , cache misses must be 
resolved by issuing a read for the corresponding subset of 
data from memory 601 . In some embodiments , an entire 
cache line containing the requested subset of data is read 
from memory 601 and placed into a cache line of cache 603 . 
Various techniques for cache replacement may be utilized as 
appropriate . Examples of cache replacement policies for 
determining the cache line to use include First In First Out , 
Least Recently Used , etc . 
10082 ] In some embodiments , each of read buffers 621 - 
632 stores a subset of values located consecutively in 
memory . For example , in the example shown , read buffer 
621 is 8 - bytes in size and stores a subset of 8 - bytes of values 
stored consecutively in memory . In various embodiments , 
the values are located consecutively in memory 601 and read 
as a continuous block of values into a cache line of cache 
603 . By implementing read buffers using the concept of a 
subset of values , where each of the values is located con 
secutively in memory , each read buffer is capable of loading 
multiple elements ( e . g . , up to eight elements for an 8 - byte 
read buffer ) together . In the example shown , a fewer number 
of reads are required than the number of elements to 
populate every read buffer with an element . For example , up 
to twelve reads are required to load 96 - elements into the 
twelve read buffers 621 - 632 . In many scenarios , even fewer 
reads are necessary in the event that a cache contains the 
requested subset of data . Similarly , in some scenarios , a 
single cache line is capable of storing the data requested for 
multiple read buffers . 
[ 0083 ] In some embodiments , read buffers 621 - 632 are 
utilized by hardware data formatter 605 to prepare input 
operands such as an vector of inputs for a computational 
array , such as matrix processor 107 of FIG . 1 . In some 
embodiments , the 96 - bytes stored in read buffers 621 - 632 
correspond to a 96 - element input vector for a computational 
array . In some embodiments , hardware data formatter 605 
selects elements from read buffers 621 - 632 to accommodate 
a particular stride when performing a computational opera 
tion such as convolution . In some embodiments , hardware 
data formatter 605 selectively filters out the elements from 
read buffers 621 - 632 that are not required for the computa 
tional operation . For example , hardware data formatter may 
only utilize a portion of the elements from each read buffer 
( e . g . , every other byte of a read buffer ) as the input vector 
elements for the computational array . In some embodiments , 
the filtering is performed using a multiplexer to selectively 
include elements from read buffers 621 - 632 when preparing 
an input vector for a computational operation . In various 
embodiments , the unused bytes of the read buffer may be 
discarded . 
10084 ] As an example , in a scenario with a stride param 
eter set to two , the initial input elements for a convolution 
operation are every other element of a row of an input 
matrix . Depending on the input matrix size , the elements 
include the 1st , 3rd , 5th , and 7th elements , etc . , for the first 
group of input elements necessary for a convolution opera 

tion . Read buffer 621 is configured to read the first 8 
elements ( 1 through 8 ) , and thus elements 2 , 4 , 6 , and 8 are 
not needed for a stride of two . As another example , using a 
stride of five , four elements are skipped when determining 
the start of the next neighboring region . Depending on the 
size of the input data , the 1st , 6th , 11th , 16th , and 21st 
elements , etc . , are the first input elements necessary for a 
convolution operation . The elements 2 - 5 and 7 - 8 are loaded 
into a read buffer 621 but are not used for calculating the first 
dot - product component result corresponding to each region 
and may be filtered out . 
[ 0085 ] In various embodiments , each read buffer loads 
eight consecutive elements and can satisfy two elements for 
a stride of five . For example , read buffer 621 initiates a read 
at element 1 and also reads in element 6 , read buffer 621 
initiates a read at element 11 and also reads in element 16 , 
read buffer 622 initiates a read at element 21 and also reads 
in element 26 , etc . In some embodiments , the reads are 
aligned to multiples of the read buffer size . In some embodi 
ments , only the first read buffer is aligned to a multiple of the 
read buffer size . In various embodiments , only the start of 
each matrix row must be aligned to a multiple of the read 
buffer size . Depending on the stride and the size of the input 
matrix , in various embodiments , only a subset of the read 
buffers may be utilized . In various embodiments , the ele 
ments corresponding to least twelve regions , one element for 
each read buffer 621 - 632 , are loaded and fed to a compu 
tational array in parallel . In various embodiments , the num 
ber of input elements provided in parallel to a computational 
array is at least the number of read buffers in the hardware 
data formatter . 
( 0086 ] In some embodiments , the elements not needed for 
the particular stride are filtered out and not passed to the 
computational array . In various embodiments , using , for 
example , a multiplexer , the input elements conforming to the 
stride are selected from the loaded read buffers and format 
ted into an input vector for a computational array . Once the 
input vector is formatted , hardware data formatter 605 feeds 
the input vector to the computational array . The unneeded 
elements may be discarded . In some embodiments , the 
unneeded elements may be utilized for the next dot - product 
component and a future clock cycle and are not discarded 
from read buffers 621 - 632 . In various embodiments , the 
elements not needed for implementing a particular stride are 
fed as inputs to a computational array and the computational 
array and / or post - processing will filter the results to remove 
them . For example , the elements not needed may be pro 
vided as input to a computation array but the computation 
units corresponding to the unnecessary elements may be 
disabled . 

[ 0087 ] In some embodiments , hardware data formatter 
605 formats the input vector for a computational array to 
include padding . For example , hardware data formatter 605 
may insert padding using read buffers 621 - 632 . In various 
embodiments , one or more padding parameters may be 
described by a control unit using a control signal and / or 
instruction parameter . 
[ 0088 ] In some embodiments , hardware data formatter 
605 determines a set of addresses for preparing operands for 
a computational array . For example , hardware data formatter 
605 calculates associated memory locations required to load 
a subset of values , determines whether the subset is cached , 
and potentially issues a read to memory for the subset in the 
event of a cache miss . In some scenarios , a pending read 
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may satisfy a cache miss . In various embodiments , hardware 
data formatter 605 only processes the memory address 
associated with the start element and end element of each 
read buffer 621 - 632 . In various embodiments , each read 
buffer 621 - 632 associates the validity of the cache entry for 
a subset of values with the memory addresses of the start and 
end values of the corresponding read buffer . In the example 
shown , read buffer 621 is configured to store 8 - bytes cor 
responding to up to eight elements . In various embodiments , 
hardware data formatter 605 calculates the address of the 
first element and the address of the last element of read 
buffer 621 . Hardware data formatter 605 performs a cache 
check on the first and last element addresses . In the event 
either of the addresses is a cache miss , hardware data 
formatter 605 issues a memory read for 8 - bytes starting at 
the address of the first element . In the event that both 
addresses are a cache hit from the same cache line , hardware 
data formatter 605 considers every element in the subset to 
be a valid cache hit and loads the subset of values from the 
cache via the appropriate cache line . In this manner , an entire 
row of elements may be loaded by processing the addresses 
of at most the first and last addresses of each read buffer 
621 - 632 ( e . g . , at most 24 addresses ) . 
[ 0089 ] FIG . 7 is a flow diagram illustrating an embodi 
ment of a process for performing machine learning process 
ing . The process of FIG . 7 describes a pipeline for slicing 
one or more matrices to fit a computational array , receiving 
a computational operation for the sliced matrix or matrices , 
preparing the data for performing the operation , and com 
puting one or more results associated with the operation . 
Depending on the application , the process of FIG . 7 may be 
repeated on different slices of a matrix and the results 
combined . For example , a frame of image data larger than a 
computational array may be sliced into smaller matrices and 
computational operations performed on the sliced matrices . 
The results of multiple passes of FIG . 7 on different slices 
may be combined to generate the result of a computational 
operation on the entire frame . In various embodiments , the 
process of FIG . 7 is performed by a microprocessor system 
such as the microprocessor system of FIGS . 1 and 5 . In 
various embodiments , the process of FIG . 7 is utilized to 
implement applications relying on computational operations 
such as convolution . For example , the process of FIG . 7 may 
be utilized to implement a machine learning application that 
performs inference using a machine learning model . In some 
embodiments , the process of FIG . 7 is utilized to implement 
the processes of FIGS . 2 and 3 . 
[ 0090 ] At 701 , one or more matrices may be sliced . In 
some embodiments , the size of a matrix , for example , a 
matrix representing a frame of vision data , is larger than will 
fit in a computational array . In the event the matrix exceeds 
the size of the computational array , the matrix is sliced into 
a smaller two - dimensional matrix with a size limited to the 
appropriate dimensions of the computational array . In some 
embodiments , the sliced matrix is a smaller matrix with 
addresses to elements referencing the original matrix . In 
various embodiments , the sliced matrix is serialized into a 
vector for processing . In some embodiments , each pass of 
the process of FIG . 7 may slice a matrix into a different slice 
and slices may overlap with previous slices . In various 
embodiments , a data matrix and a weight matrix may both 
be sliced , although typically only a data matrix will require 
slicing . In various embodiments , matrices may be sliced 
only at boundaries corresponding to multiples of the read 

buffer size of a hardware data formatter . For example , in the 
event each read buffer is 8 - bytes in size , each row of a sliced 
matrix must begin with an address having a multiple of 
eight . In the event a matrix fits within the computational 
array , no slicing is required ( i . e . , the matrix slice used for the 
remaining steps of FIG . 7 is simply the original matrix ) . In 
various embodiments , the matrix slice ( s ) are used as input 
matrices for the computational operation of 703 . 
[ 0091 ] At 703 , a computational operation is received . For 
example , a matrix operation is received by the micropro 
cessor system . As one example , a computational operation 
requesting a convolution of an image with a filter is 
received . In some embodiments , the operation may include 
the necessary parameters to perform the computational 
operation including the operations involved and the oper 
ands . For example , the operation may include the size of the 
input operands ( e . g . , the size of each input matrix ) , the start 
address of each input matrix , a stride parameter , a padding 
parameter , and / or matrix , vector , and / or post - processing 
commands . For example , a computational operation may 
describe an image data size ( e . g . , 96x96 , 1920x1080 , etc . ) 
and bit depth ( e . g . , 8 - bits , 16 - bits , etc . ) and a filter size and 
bit depth , etc . In some embodiments , the computational 
operation is received by a control unit such as control unit 
101 of FIG . 1 and 501 of FIG . 5 . In some embodiments , a 
control unit processes the computational operation and per 
forms the necessary synchronization between components 
of the microprocessor system . In various embodiments , the 
computational operation is a hardware implementation using 
control signals . In some embodiments , the computational 
operation is implemented using one or more processor 
instructions . 
10092 ] . At 705 , each hardware data formatter receives a 
data formatting operation . In some embodiments , the data 
formatting operation is utilized to prepare input arguments 
for a computational array such as matrix processor 107 of 
FIG . 1 and 507 of FIG . 5 . For example , each hardware data 
formatter receives a data formatting operation that includes 
information necessary to retrieve the data associated with a 
computational operation ( e . g . , a start address of a matrix , a 
matrix size parameter , a stride parameter , a padding param 
eter , etc . ) and to prepare the data to be fed as input into the 
computational array . In some embodiments , the data for 
matting operation is implemented using control signals . In 
some embodiments , the data formatting operation is 
received by a hardware data formatter such as data formatter 
104 and 504 of FIGS . 1 and 5 , respectively , and weight 
formatter 106 and 506 of FIGS . 1 and 5 , respectively . In 
some embodiments , hardware data formatter is hardware 
data formatter 605 of FIG . 6 . In some embodiments , a 
control unit such as control unit 101 of FIG . 1 and 501 of 
FIG . 5 interfaces with a hardware data formatter to process 
data formatting operations . 
[ 0093 ] At 707 , data addresses are processed by one or 
more hardware data formatters . For example , addresses 
corresponding to elements of the computational operation 
are processed by one or more hardware data formatters 
based on the formatting operations received at 705 . In some 
embodiments , the addresses are processed in order for the 
hardware data formatter to load the elements ( from a cache 
or memory ) and prepare an input vector for a computational 
array . In various embodiments , a hardware data formatter 
first calculates a pair of memory addresses for each subset of 
values to determine whether a subset of elements exists in a 
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cache before issuing a request to memory in the event of a 
cache miss . In various embodiments , a read request to 
memory incurs a large latency that may be minimized by 
reading elements from a cache . In some scenarios , all 
elements are read from a cache and thus require any cache 
misses to first populate the cache by issuing a read to 
memory . To minimize the latency for each read , in various 
embodiments , the reads are performed on subsets of ele 
ments ( or values ) . In some embodiments , memory may only 
have a limited number of read ports , for example , a single 
read port , and all reads are processed one at a time . For 
example , performing 96 independent reads incurs the 
latency of 96 independent reads for a memory with a single 
read port . To reduce read latency , subsets of values are read 
together from memory into corresponding read buffers of a 
hardware data formatter . For example , using subsets of eight 
values , at most 12 memory reads are required to read 96 
values . In the event some of the subsets are in the cache from 
previous memory reads , even fewer memory reads are 
required . 
[ 0094 ] In various embodiments , subsets of values are 
prepared by determining the memory addresses for the start 
value of each subset ( where each value corresponds to an 
element ) and the end value of each subset . For example , to 
prepare a subset of 8 - values each of 1 - byte , a cache check 
is performed using the calculated address of the start value 
and the calculated address of the end value of the subset . In 
the event either of the addresses are cache misses , a memory 
read is issued to read 8 - bytes from memory beginning at the 
address of the start value . In some embodiments , in addition 
to reading the requested 8 - bytes from memory , an entire 
cache line of data ( corresponding to multiple subsets ) is read 
from memory and stored in the cache . In various embodi 
ments , in the event the start and end addresses of a subset are 
cached at the same cache line , the entire subset of values is 
considered cached and no cache check is needed for the 
remaining elements of the subset . The entire subset is 
considered cached in the event the start and end elements are 
cached in the same cache line . In various embodiments , the 
processing at 707 determines the addresses of the start value 
of the subset and the end value of the subset for each subset 
of values . In various embodiments , one read buffer exists for 
each subset of values . In various embodiments , read buffers 
of a hardware data formatter are read buffers 621 - 632 of 
hardware data formatter 605 of FIG . 6 . 
[ 0095 ] In some embodiments , a stride parameter is imple 
mented and non - consecutive subsets of values are loaded 
into each read buffer . In various embodiments , each subset 
of continuous values includes one or more elements needed 
to implement a particular stride parameter . For example , for 
a stride of one , every value in a subset of values located 
consecutively in memory is a utilized element . As another 
example , for a stride of two , every other value located 
consecutively in memory is utilized and a subset of eight 
consecutive values includes four utilized elements and four 
that are not utilized . As another example , for a stride of five , 
a subset of eight values located consecutively in memory 
may include two utilized elements and six unused elements . 
For each subset of elements located consecutively in 
memory , the memory addresses for the start and end ele 
ments of the subset are determined and utilized to perform 
a cache check at 709 . In various embodiments , the start 
element of the subset is the first element of the subset . In 
some embodiments , the end element of the subset is the last 

element of the subset , regardless of whether the element is 
utilized to implement the stride parameter . In some embodi 
ments , the end element of the subset is the last utilized 
element and not the last element of the subset . 
[ 0096 ] In various embodiments , once the number of uti 
lized elements that are included in a subset of consecutive 
elements is determined , the next subset of elements begins 
with the next element needed to satisfy the stride parameter . 
The next element may result in a memory location that is 
located at an address non - consecutive with the address of the 
last element of the previous subset . As an example , using a 
stride of five , four elements are skipped when determining 
the start of the next subset of values . Depending on the size 
of the input data , the 1st and 6th elements are stored in the 
first subset of values , 11th and 16th elements in the second 
subset of values , and 21st and 26th elements in the third 
subset of values , etc . In various embodiments , the second 
subset of values starts with the 11th element and the third 
subset of values starts with the 21st element . Each subset is 
located in memory at locations non - consecutive with the 
other subsets . Examples of unused elements in the first 
subset of values include the elements 2 - 5 and 7 - 8 . In some 
embodiments , the first row of each matrix is aligned to a 
multiple of the subset size . In some embodiments , this 
alignment restriction is required to prevent gaps of invalid 
values between rows when a matrix is serialized . In some 
embodiments , all subsets are aligned to the multiple of the 
subset size . 
[ 0097 ] In various embodiments , each subset of values is 
loaded in a read buffer such as read buffers 621 - 632 of FIG . 
6 . Depending on the particular application ( e . g . , the stride , 
the size of the input matrix , the size of the read buffer , the 
number of read buffers , etc . ) , some of the read buffers of a 
hardware data formatter may not be utilized . In some 
scenarios , the number of input elements provided in parallel 
to a computational array is at least the number of subsets . 
For example , a hardware data formatter supporting twelve 
subsets of values can provide at least twelve elements in 
parallel to a computational array . 
[ 0098 ] In some embodiments , the formatting performed 
by a hardware data formatter includes converting a matrix 
into a vector with elements of the vector fed to a computa 
tional array over multiple clock cycles . For example , in 
some embodiments , a matrix corresponding to data ( e . g . , 
image data ) is formatted to prepare vectors corresponding to 
sub - regions of the data . In some embodiments , each element 
fed to a computational array for a particular clock cycle 
corresponds to the n - th element of a vector associated with 
a sub - region of the data . As an example , a 3x3 matrix may 
be formatted into a one - dimensional vector of nine elements . 
Each of the nine elements may be fed into the same 
computation unit of a computational array . In various 
embodiments , feeding the 9 elements requires are least 9 
clock cycles . 
[ 0099 ] At 709 , a determination is made whether the data 
corresponding to the addresses determined for each subset at 
707 are cached . For example , a cache check is performed on 
each subset by determining whether the data associated with 
the address of the start value of the subset and the address 
of the end value of the subset is in the same cache line . In 
various embodiments , a cache check is performed for each 
read buffer , such as read buffers 621 - 632 of FIG . 6 , of a 
hardware data formatter . In the event the data is cached , the 
processing continues to 713 . In various embodiments , the 
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cache utilized is cache 503 of FIG . 5 and / or 603 of FIG . 6 . 
In the event the data is not cached , processing continues to 
711 . 
[ 0100 ] At 711 , each requested subset of data is read into 
the cache as an entire subset of values . In various embodi 
ments , each subset data is read into the cache from memory . 
In some embodiments , the memory is memory 502 of FIG . 
5 and 601 of FIG . 6 . In some embodiments , an entire cache 
line is read into the cache . For example , a cache miss for a 
subset of values results in loading the subset of values into 
a cache line along with the other data located consecutively 
with the subset of values in memory . In some scenarios , a 
single cache line is sufficient to cache multiple subsets . 
[ 0101 ] At 713 , matrix processing is performed . For 
example , a matrix processor performs a matrix operation 
using the data cached and received by a hardware data 
formatter . In various embodiments , the cached data is 
received by the hardware data formatter and processed 
according to a formatting operation by a hardware data 
formatter into input values for matrix processing . In some 
embodiments , the processing by the hardware data formatter 
includes filtering out a portion of the received cached data . 
For example , in some embodiments , subsets of values 
located consecutively in memory are read into the cache and 
received by the hardware data formatter . In various embodi 
ments , a computational operation may specify a stride 
and / or padding parameters . For example , to implement a 
specified stride for convolution , one or more data elements 
may be filtered from each subset of values . In some embodi 
ments , only a subset of the elements from each of the subsets 
of values is selected to create an input vector for matrix 
processing . 
10102 ] In various embodiments , the matrix processor per 
forms the computational operation specified at 703 . For 
example , a matrix processor such as matrix processor 107 of 
FIG . 1 and 507 of FIG . 5 performs a matrix operation on 
input vectors received by hardware data formatters . In 
various embodiments , the matrix processor commences pro 
cessing once all the input operands are made available . The 
output of matrix processing is fed to 715 for optional 
additional processing . In various embodiments , the result of 
matrix processing is shifted out of a computational array one 
vector at a time . 
[ 0103 ] At 715 , vector and / or post - processing operations 
are performed . For example , vector processing may include 
the application of an activation function such as a rectified 
linear unit ( ReLU ) function . In some embodiments , vector 
processing includes scaling and / or normalization . In various 
embodiments , vector processing is performed on one vector 
of the output of a computational array at a time . In some 
embodiments , vector processing is performed by a vector 
processor such as vector engine 111 of FIG . 1 . In various 
embodiments , post - processing operations may be performed 
at 715 . For example , post - processing operations such as 
pooling may be performed using a post - processor unit . In 
some embodiments , post - processing is performed by a post 
processing processor such as post - processing unit 115 of 
FIG . 1 . In some embodiments , vector and / or post - processing 
operations are optional operations . 
[ 0104 ] FIG . 8 is a flow diagram illustrating an embodi 
ment of a process for retrieving input operands for a com 
putational array . The process of FIG . 8 describes a process 
for preparing data elements by a hardware data formatter for 
a computational array . For example , the input data is parti 

tioned into subsets based on the number of read buffers of a 
hardware data formatter . The process of FIG . 8 is utilized to 
load the corresponding read buffers with data corresponding 
to subsets of values located consecutively in memory . By 
partitioning values into subsets based on memory location 
and performing a single read on the entire subset instead of 
an individual read for each element , the latency incurred 
from accessing memory is reduced . In various embodiments , 
the process of FIG . 8 is performed by a microprocessor 
system such as the microprocessor system of FIGS . 1 and 5 . 
In various embodiments , the process of FIG . 8 is imple 
mented at 707 , 709 , 711 , and 713 of FIG . 7 . In various 
embodiments , the memory utilized by the process of FIG . 8 
is memory 502 of FIG . 5 and 601 of FIG . 6 . In various 
embodiments , the cache utilized by the process of FIG . 8 is 
cache 503 of FIG . 5 and 603 of FIG . 6 . In various embodi 
ments , the process of FIG . 8 is performed at least in part by 
a hardware data formatter such as the hardware data for 
matters of FIGS . 1 , 5 , and 6 . For example , a hardware data 
formatter may be utilized to perform the steps of 801 , 803 , 
805 , 807 , 809 , 811 , 813 , and portions of 815 . In some 
embodiments , the process of FIG . 8 is utilized to implement 
the processes of FIGS . 2 and 3 . 
[ 0105 ] In some embodiments , the process of FIG . 8 is 
performed in parallel on different read buffers and / or subset 
of values . For example , in a scenario with eight read buffers , 
the data to be loaded into the read buffers may be partitioned 
into at most eight subsets and the process of FIG . 8 is 
performed on each subset in parallel . In some embodiments , 
the number of subsets is based on capabilities of the cache 
and / or the memory . For example , the number of subsets may 
be based on how many simultaneous cache checks may be 
performed on the cache and / or the number of simultaneous 
reads to memory that may be issued . 
[ 0106 ] At 801 , the first subset of data elements located 
consecutively in memory is processed . In various embodi 
ments , the first consecutive subset of data corresponds to the 
data element designated for the first read buffer of a hard 
ware data formatter . In some embodiments , the address of 
the first element must be a multiple of the number of 
elements in each subset . For example , using an 8 - byte read 
buffer , the address of the first element must be a multiple of 
eight . 
0107 ] . At 803 , start and end memory addresses are deter 
mined for the current subset . For example , the memory 
address of the start element of a subset and the memory 
address of the end element of a subset are determined . In 
various embodiments , the start and end addresses are deter 
mined by a hardware data formatter , such as the hardware 
data formatters of FIGS . 1 , 5 , and 6 . 
[ 0108 ] At 805 , a determination is made on whether the 
subset of data is cached or pending a read . For example , a 
determination is made whether the data corresponding to the 
start and end addresses determined at 803 are cached at the 
same cache line or will be cached as a result of an already 
issued memory read . In some embodiments , a pending read 
for a different subset brings an entire cache line of data into 
memory and will result in caching the current subset . In the 
event the data is not cached or will not be cached as a result 
of a pending memory read , processing continues to 807 . In 
the event the data is cached or will be cached by a pending 
memory read , processing continues to 811 . 
[ 0109 ] At 807 , a determination is made on whether a 
memory read is already issued . In the event a memory read 
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is already issued , processing completes for the current clock 
cycle . In the event a memory read has not been issued , 
processing continues to 809 . In some embodiments , the 
memory is configured with a single read port ( e . g . , to 
increase density ) and the memory can only process one read 
at a time . In various embodiments , the determination of 
whether a memory read has been issued is based on the 
capability of the memory configuration and / or the availabil 
ity of memory read ports . Not shown in FIG . 8 , in some 
embodiments , in the event an additional memory read is 
supported for the current clock cycle ( despite a pending 
read ) , processing continues to 809 ; otherwise processing 
completes for the current clock cycle . 
[ 0110 ] At 809 , a read is issued to cache a subset of data 
elements . For example , a block of memory beginning at the 
start address determined at 803 and extending for the length 
based on the size of a read buffer is read from memory into 
the memory cache . In various embodiments , an entire cache 
line of memory is read into the memory cache . For example , 
in a scenario with a cache line of 256 bytes and read buffers 
each capable of storing 8 - bytes , a memory read will read 256 
bytes of continuous data into a cache line , which corre 
sponds to 32 subsets of non - overlapping 8 - byte values . In 
various embodiments , reading a subset of values as a single 
memory read request reduces the latency associated with 
loading each element . Moreover , reading multiple subsets of 
values together may further reduce the latency by caching 
other subsets of values that may be associated with other 
read buffers . In some embodiments , loading multiple subsets 
of values takes advantage of potential locality between the 
subsets resulting in lower latency . 
[ 0111 ] At 811 , a determination is made on whether there 
are additional subsets of data elements . In the event that 
every subset has been processed , processing continues to 
813 . In the event that there are additional subsets to be 
processed , processing loops back to 803 . In some embodi 
ments , depending on the input size , one or more read buffers 
of a hardware data formatter may not be utilized . 
[ 0112 ] At 813 , a determination is made on whether all the 
data elements are cached . In the event some elements are not 
cached , processing completes for the current clock cycle to 
allow the non - cached data elements to be loaded from 
memory into the cache . In the event all the data elements are 
cached , the data elements are all available for processing and 
processing proceeds to 815 . 
[ 0113 ] At 815 , matrix processing is performed . For 
example , the cached data elements are received at one or 
more hardware data formatters , formatted , and fed as input 
vector ( s ) to a computational array for processing . A com 
putational array , such as matrix processor 107 of FIG . 1 and 
507 of FIG . 5 , performs matrix processing on the input 
vectors . 
[ 0114 ] Although the foregoing embodiments have been 
described in some detail for purposes of clarity of under 
standing , the invention is not limited to the details provided . 
There are many alternative ways of implementing the inven 
tion . The disclosed embodiments are illustrative and not 
restrictive . 
What is claimed is : 
1 . A microprocessor system , comprising : 
a computational array that includes a plurality of compu 

tation units , wherein each of the plurality of computa 
tion units operates on a corresponding value addressed 
from memory and the values operated by the plurality 

of computation units are synchronously provided 
together to the computational array as a group of values 
to be processed in parallel ; and 

a hardware data formatter configured to gather the group 
of values . 

2 . The system of claim 1 , wherein the group of values 
includes a first subset of values located consecutively in the 
memory and a second subset of values located consecutively 
in the memory , and the first subset of values is not located 
consecutively in the memory from the second subset of 
values . 

3 . The system of claim 1 , wherein the computational array 
is configured to receive at least two vector input operands . 

4 . The system of claim 1 , wherein each computation unit 
of the plurality of computation units is configured to perform 
a dot - product component operation using the group of 
values in parallel . 

5 . The system of claim 1 , wherein each computation unit 
of the plurality of computation units includes an arithmetic 
logic unit , an accumulator , and a shadow register . 

6 . The system of claim 1 , wherein the group of values 
corresponds to an input channel of vision data . 

7 . The system of claim 1 , wherein the group of values 
corresponds to sensor data . 

8 . The system of claim 7 , wherein the sensor data is 
non - image sensor data . 

9 . The system of claim 8 , wherein the non - image sensor 
data includes ultrasonic , radar , or LiDAR data . 

10 . The system of claim 1 , wherein the group of values 
corresponds to a convolution filter . 

11 . The system of claim 10 , wherein the convolution filter 
is constructed to identify features of an input data . 

12 . The system of claim 2 , wherein the first subset of 
values is retrieved from a cache using a single cache read . 

13 . The system of claim 2 , wherein the first subset of 
values and the second subset of values are retrieved from a 
single cache line . 

14 . The system of claim 1 , wherein the memory is 
configured to dynamically adjust an allocation between a 
first portion of the memory for a data input and a second 
portion of the memory for a weight input . 

15 . The system of claim 2 , wherein the hardware data 
formatter is configured to determine a corresponding start 
memory address for each of the first subset and the second 
subset . 

16 . The system of claim 15 , wherein the hardware data 
formatter is configured to determine a corresponding end 
memory address for each of the first subset of values and the 
second subset of values . 

17 . The system of claim 15 , wherein a cache check is 
performed for each of the first subset and the second subset 
including by determining whether a value stored at the 
determined starting memory addresses for the first subset 
has been cached and determining whether a value stored at 
the determined starting memory addresses for the second 
subset has been cached . 

18 . The system of claim 2 , wherein a cache check is 
performed for the first subset including by determining 
whether a first value and a last value for the first subset are 
stored in a cache . 

19 . The system of claim 1 , wherein subsets of values 
included in the group of values are selected based at least in 
part on a padding parameter or a stride parameter . 
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20 . The method comprising : 
receiving a computational operation ; 
receiving a data formatting operation at a hardware data 

formatter ; 
retrieving a first group of values associated with an input 

data , wherein the first group of values includes a first 
subset of values located consecutively in a memory and 
a second subset of values located consecutively in the 
memory , and the first subset of values is not located 
consecutively in the memory from the second subset of 
values ; 

retrieving a second group of values associated with a 
weight data ; 

providing in parallel the first group of values and the 
second group of values to a computational array micro 
processor ; and 

processing the first group of values and the second group 
of values as operands in parallel using the computa 
tional array . 

21 . A microprocessor system , comprising : 
a computational array that includes a plurality of compu 

tation units , wherein each of the plurality of computa 
tion units operates on a corresponding value addressed 
from memory and the values operated by the plurality 
of computation units are synchronously provided 
together to the computational array as a group of 
values , wherein the group of values includes at least 96 
values and the group of values includes at least 12 
subsets of values ; 

a hardware data formatter configured to gather the group 
of values , wherein the group of values includes a first 
subset of values located consecutively in the memory 
and a second subset of values located consecutively in 
the memory , and the first subset of values is not 
required to be located consecutively in the memory 
from the second subset of values . 

* * * * * 


