
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization

International Bureau (10) International Publication Number

(43) International Publication Date WO 2019/022872 Al
31 January 2019 (31.01.2019) W !P O PCT

(51) International Patent Classification: Creek Rd., Palo Alto, CA 94304 (US). BANNON, Peter,
G06F 17/16 (2006.0 1) G06F 15/18 (2006.01) Joseph; 3500 Deer Creek Rd., Palt Alto, CA 94304 (US).
G06F 15/16 (2006.01)

(74) Agent: PARK, Jong, Andrew, H.; Van Pelt, Yi & James
(21) International Application Number: LLP, 10050 N. Foothill Blvd., Suite 200, Cupertino, CA

PCT/US20 18/0386 18 95014 (US).

(22) International Filing Date: (81) Designated States (unless otherwise indicated, for every
20 June 2018 (20.06.2018) kind of national protection available): AE, AG, AL, AM,

AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
(25) Filing Language: English

CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO,
(26) Publication Language: English DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,

HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,
(30) Priority Data: KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME,

62/536,399 24 July 2017 (24.07.2017) US MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
15/710,433 20 September 2017 (20.09.2017) US OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
62/625,25 1 0 1 February 2018 (01.02.2018) US SC, SD, SE, SG, SK, SL, SM, ST, SV, SY,TH, TJ, TM, TN,
15/920,156 13 March 2018 (13.03.2018) US TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(71) Applicant: TESLA, INC. [US/US]; 3500 Deer Creek Rd., (84) Designated States (unless otherwise indicated, for every
Palo Alto, CA 94304 (US). kind of regional protection available): ARIPO (BW, GH,

(72) Inventors: DAS SARMA, Debjit; 3500 Deer Creek Rd., GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,

Palo Alto, CA 94304 (US). TALPES, Emil; 3500 Deer UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,

(54) Title: VECTOR COMPUTATIONAL UNIT

100

- 103

♦ ♦ ♦ ♦ ♦ ♦ ♦
M07

□ 109

♦ ♦ ♦ ♦ ♦ ♦ ♦
□ £113

111

† † † †
15

l Figure 1
00

(57) Abstract: A microprocessor system comprises a computational array and a vector computational unit. The computational array
© includes a plurality of computation units . The vector computational unit is in communication with the computational array and includes

a plurality of processing elements. The processing elements are configured to receive output data elements from the computational

o array and process in parallel the received output data elements.

o

[Continued on nextpage]

WO 2019/022872 Al llll I I I I 11III I I I II I I I II I III IIII II I II

TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,

EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,

MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,

TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,

KM, ML, MR, NE, SN, TD, TG).

Published:

VECTOR COMPUTATIONAL UNIT

CROSS REFERENCE TO OTHER APPLICATIONS

[0001] This application claims priority to U.S. Provisional Patent Application No.

62/625,251 entitled VECTOR COMPUTATIONAL UNIT filed February 1, 2018, and claims

priority to U.S. Provisional Patent Application No. 62/536,399 entitled ACCELERATED

MATHEMATICAL ENGINE filed July 24, 2017, and is a continuation-in-part of co-pending U.S.

Patent Application No. 15/710,433 entitled ACCELERATED MATHEMATICAL ENGINE filed

September 20, 2017, which claims priority to U.S. Provisional Patent Application No. 62/536,399

entitled ACCELERATED MATHEMATICAL ENGINE filed July 24, 2017, all of which are

incorporated herein by reference for all purposes.

BACKGROUND OF THE INVENTION

[0002] Processing for machine learning and artificial intelligence typically requires

performing mathematical operations on large sets of data and often involves solving multiple

convolution layers and pooling layers. Machine learning and artificial intelligence techniques

typically utilize matrix operations and non-linear functions such as activation functions.

Applications of machine learning include self-driving and driver-assisted automobiles. In some

scenarios, computer processors are utilized to perform machine learning training and inference.

Traditional computer processors are able to perform a single mathematical operation very quickly

but typically can only operate on a limited amount of data simultaneously. As an alternative,

graphical processing units (GPUs) may be utilized and are capable of performing the same

mathematical operations but on a larger set of data in parallel. By utilizing multiple processor

cores, GPUs may perform multiple tasks in parallel and are typically capable of completing large

graphics processing tasks that utilized parallelism faster than a traditional computer processor.

However, neither GPUs nor traditional computer processors were originally designed for machine

learning or artificial intelligence operations. Machine learning and artificial intelligence operations

often rely on the repeated application of a set of specific machine learning processor operations

over very large datasets. Therefore, there exists a need for a microprocessor system that supports

performing machine learning and artificial intelligence specific processing operations on large

datasets in parallel without the overhead of multiple processing cores for each parallel operation.

BRIEF DESCRIPTION OF THE DRAWINGS

[0003] Various embodiments of the invention are disclosed in the following detailed

description and the accompanying drawings.

[0004] Figure 1 is a block diagram illustrating an embodiment of a microprocessor system

for performing machine learning processing.

[0005] Figure 2 is a block diagram illustrating an embodiment of a microprocessor system

for performing machine learning processing.

[0006] Figure 3 is a block diagram illustrating an embodiment of a microprocessor system

for performing machine learning processing.

[0007] Figure 4A is a block diagram illustrating an embodiment of a vector computational

unit for performing machine learning processing.

[0008] Figure 4B is a table illustrating an exemplary aliasing of vector registers.

[0009] Figure 5 is a flow diagram illustrating an embodiment of a process for determining

processor instructions for a microprocessor system.

[0010] Figure 6A is a flow diagram illustrating an embodiment of a process for the running

execution of a vector computational unit.

[0011] Figure 6B is a flow diagram illustrating an embodiment of a process for processing

vector data by a vector computational unit.

[0012] Figure 7 is a block diagram illustrating an embodiment of an encoding format for a

vector computational unit instruction.

[0013] Figure 8 is a flow diagram illustrating an embodiment of a process for performing a

single vector computational unit instruction by a vector computational unit.

[0014] Figure 9 is a diagram illustrating an exemplary instruction cycle of a vector

computational unit.

[0015] Figure 10 is a block diagram illustrating an embodiment of a computation unit of a

computational array.

DETAILED DESCRIPTION

[0016] The invention can be implemented in numerous ways, including as a process; an

apparatus; a system; a composition of matter; a computer program product embodied on a computer

readable storage medium; and/or a processor, such as a processor configured to execute instructions

stored on and/or provided by a memory coupled to the processor. In this specification, these

implementations, or any other form that the invention may take, may be referred to as techniques.

In general, the order of the steps of disclosed processes may be altered within the scope of the

invention. Unless stated otherwise, a component such as a processor or a memory described as

being configured to perform a task may be implemented as a general component that is temporarily

configured to perform the task at a given time or a specific component that is manufactured to

perform the task. As used herein, the term 'processor' refers to one or more devices, circuits,

and/or processing cores configured to process data, such as computer program instructions.

[0017] A detailed description of one or more embodiments of the invention is provided

below along with accompanying figures that illustrate the principles of the invention. The

invention is described in connection with such embodiments, but the invention is not limited to any

embodiment. The scope of the invention is limited only by the claims and the invention

encompasses numerous alternatives, modifications and equivalents. Numerous specific details are

set forth in the following description in order to provide a thorough understanding of the invention.

These details are provided for the purpose of example and the invention may be practiced according

to the claims without some or all of these specific details. For the purpose of clarity, technical

material that is known in the technical fields related to the invention has not been described in

detail so that the invention is not unnecessarily obscured.

[0018] A microprocessor system utilizing a vector computational unit and a vector

computational unit instruction set architecture is disclosed. For example, a microprocessor system

includes a computational array in communication with a vector computational unit. In various

embodiments, a computational array is a matrix processor capable of performing arithmetic

operations on two input vectors and includes a plurality of computation units to receive the M

operands and N operands from the input vectors. In some embodiments, the computation units are

sub-circuits that include an arithmetic logic unit, an accumulator, and a shadow register for

performing operations such as generating dot-products and performing various processing for

convolution. Unlike conventional graphical processing unit (GPU) or central processing unit

(CPU) processing cores, where each core is configured to receive its own unique processing

instruction, the computation units of the computational array each perform the same computation in

parallel in response to an individual instruction received by the computational array. In various

embodiments, the vector computational unit includes a plurality of processing elements for

performing load, arithmetic, and store operations on a vector of input data in parallel. The

processing elements of the vector computational unit are configured to receive an output from the

computational array. In various embodiments, the output of the computational array and the input

into the vector computational unit is an array of data. The received input to the vector

computational unit is processed in parallel in response to a single processor instruction. Similar to

the computational array, the processing elements of the vector computational unit each perform the

same computation in parallel in response to an individual instruction received by the vector

computational unit. In some embodiments, the microprocessor system further includes a control

unit configured to provide instructions to the vector computational unit. Each single processor

instruction may specify a plurality of component instructions to be executed by the vector

computational unit. In response to a single instruction, each of the plurality of processing elements

of the vector computational unit processes different data elements of the vector input in parallel

with the other processing elements. In some embodiments, the output of the vector computational

unit is fed into a post-processing unit for performing post-processing such as pooling operations.

[0019] In some embodiments, a microprocessor system comprises at least a computational

array and a vector computational unit. For example, a computational array is communicatively

connected to a vector computational unit such that the output of the computational array is fed as

input to the vector computational unit. In various embodiments, the computational array includes a

plurality of computation units. For example, the computation units may be sub-circuits of a matrix

processor that include the functionality for performing one or more multiply, add, and shift

operations. As another example, computation units may be sub-circuits that include the

functionality for performing a dot-product operation. In various embodiments, the computational

array includes a sufficient number of computation units for performing multiple operations on the

data inputs in parallel. For example, a computational array configured to receive M operands and

N operands may include at least M x N computation units. In various embodiments, the

microprocessor system further comprises a control unit for coordinating processing between the

computational array and a vector computational unit. For example, the control unit may coordinate

data from memory to be fed into the computational array, data from the computational array to be

fed into the vector computational unit, and/or data from the vector computational unit to be stored

in memory or fed into a post-processing unit. In some embodiments, the control unit is configured

to provide computational array instructions to the computational array, vector computational unit

instructions to the vector computational unit, and/or post-processing instructions to a post

processing unit.

[0020] In some embodiments, the vector computational unit in communication with the

computational array includes a plurality of processing elements configured to receive as input the

output data elements from the computational array. For example, a vector computational unit, such

as a vector engine, receives as input a vector for processing. The vector computational unit may

include a processing element for each element of the input vector. An example vector

computational unit configured to receive a vector of N elements (or operands) may include N

processing elements for processing the N elements in parallel. In various embodiments, the

processing elements are configured to receive output data elements from the computational array.

For example, the output from the computational array may be a vector of data elements that are fed

to be received by the processing elements of the vector computational unit. In various

embodiments, each vector computational unit processes in parallel the received output data

elements from the computational array in response to a single processor instruction. For example, a

single processor instruction is applied to each of the processing elements of the vector

computational unit to be performed on the corresponding data element.

[0021] In some embodiments, a control unit is configured to provide at least a single

processor instruction to the vector computational unit. The single processor instruction specifies a

plurality of component instructions to be executed by the vector computational unit (e.g., in

response to the single processor instruction). For example, a control unit provides to the vector

computational unit a single vector instruction, such as an instruction triad, that includes multiple

component instructions. In some embodiments, an instruction triad is a simple processor

instruction that includes up to three component instructions, such as a separate load instruction,

arithmetic logic unit (ALU) instruction, and store instruction. The three component instructions are

received and executed by the vector computational unit (e.g., in response to the instruction triad).

For example, a vector computational unit receiving an instruction triad that bundles a load

instruction, an ALU instruction, and a store instruction executes the load instruction, the arithmetic

instruction, and the store instruction. In various embodiments, in response to the single processor

instruction, the plurality of processing elements of the vector computational unit are configured to

process different data elements in parallel with other processing elements. For example, each

processing element is capable of processing in parallel a different data element from the input

vector to the vector computational unit. As another example, each of the component instructions of

a single vector processor instruction triad may be applied to each of the elements of a vector input

to complete the processing of an entire input vector of N elements in parallel using the vector

computational unit.

[0022] Figure 1 is a block diagram illustrating an embodiment of a microprocessor system

for performing machine learning processing. In the example shown, microprocessor system 100

includes control unit 101, data input 103, weight input 105, matrix processor 107, vector engine

111, and post-processing unit 115. Data input 103 and weight input 105 are input modules for

preparing data for matrix processor 107. In some embodiments, data input 103 and weight input

105 each include an input data formatter, a cache or buffer, and/or a logic circuit for preparing data

for matrix processor 107. For example, data input 103 may prepare N operands from a two-

dimensional array corresponding to image data and weight input 105 may prepare M operands

corresponding to a vector of weight values to be processed by matrix processor 107. In some

embodiments, the process of Figure 5 is performed to prepare instructions for operating on

microprocessor system 100, including matrix processor instructions for matrix processor 107 and

vector engine instructions for vector engine 111. In some embodiments, microprocessor system

100, including vector engine 111, performs the processes described below with respect to Figures

6A, 6B, and 8.

[0023] In some embodiments, matrix processor 107 is a computational array that includes a

plurality of computation units. For example, a matrix processor receiving M operands and N

operands from weight input 105 and data input 103, respectively, includes M x N computation

units. In the figure shown, the small squares inside matrix processor 107 depict that matrix

processor 107 includes a logical two-dimensional array of computation units. Computation unit

109 is one of a plurality of computation units of matrix processor 107. In some embodiments, each

computation unit is configured to receive one operand from data input 103 and one operand from

weight input 105. In some embodiments, the computation units are configured according to a

logical two-dimensional array but the matrix processor is not necessarily fabricated with

computation units laid out as a physical two-dimensional array. For example, the i-th operand of

data input 103 and the j-th operand of weight input 105 are configured to be processed by the i-th x

j-th computation unit of matrix processor 107.

[0024] In various embodiments, the data width of components data input 103, weight input

105, matrix processor 107, vector engine 111, and post-processing unit 115 are wide data widths

and include the ability to transfer more than one operand in parallel. In some embodiments, data

input 103 and weight input 105 are each 96-bytes wide. In some embodiments, data input 103 is

192-bytes wide and weight input 105 is 96-bytes wide. In various embodiments, the width of data

input 103 and weight input 105 is dynamically configurable. For example, data input 103 may be

dynamically configured to 96 or 192 bytes and weight input 105 may be dynamically configured to

96 or 48 bytes. In some embodiments, the dynamic configuration is controlled by control unit 101.

In various embodiments, a data width of 96 bytes allows 96 operands to be processed in parallel.

For example, in an embodiment with data input 103 configured to be 96-bytes wide, data input 103

can transfer 96 operands to matrix processor 107 in parallel.

[0025] In various embodiments, matrix processor 107 is configured to receive N bytes from

data input 103 and M bytes from weight input 105 and includes at least M x N computation units.

For example, matrix processor 107 may be configured to receive 96 bytes from data input 103 and

96 bytes from weight input 105 and includes at least 96 x 96 computation units. As another

example, matrix processor 107 may be configured to receive 192 bytes from data input 103 and 48

bytes from weight input 105 and includes at least 192 x 48 computation units. In various

embodiments, the dimensions of matrix processor 107 may be dynamically configured. For

example, the default dimensions of matrix processor 107 may be configured to receive 96 bytes

from data input 103 and 96 bytes from weight input 105 but the input dimensions may be

dynamically configured to 192 bytes and 48 bytes, respectively. In various embodiments, the

output size of each computation unit is equal to or larger than the input size. For example, in some

embodiments, the input to each computation unit is two 1-byte operands, one corresponding to an

operand from data input 103 and one from weight input 105, and the output of processing the two

operands is a 4-byte result. As another example, matrix processor 107 may be configured to

receive 96 bytes from data input 103 and 96 bytes from weight input 105 and output 96 4-byte

results. In some embodiments, the output of matrix processor 107 is a vector. For example, a

matrix processor configured to receive two 96-wide input vectors, where each element (or operand)

of the input vector is one byte in size, can output a 96-wide vector result where each element of the

vector result is 4-bytes in size.

[0026] In various embodiments, each computation unit of matrix processor 107 is a sub-

circuit that includes an arithmetic logic unit, an accumulator, and a shadow register. In the example

shown, the computation units of matrix processor 107 can perform an arithmetic operation on the

M operands and N operands from weight input 105 and data input 103, respectively. In various

embodiments, each computation unit is configured to perform one or more multiply, add,

accumulate, and/or shift operations. In some embodiments, each computation unit is configured to

perform a dot-product operation. For example, in some embodiments, a computation unit may

perform multiple dot-product component operations to calculate a dot-product result. For example,

the array of computation units of matrix processor 107 may be utilized to perform convolution

steps required for performing inference using a machine learning model. A two-dimensional data

set, such as an image, may be formatted and fed into matrix processor 107 using data input 103,

one vector at a time. In parallel, a vector of weights may be applied to the two-dimensional data set

by formatting the weights and feeding them as a vector into matrix processor 107 using weight

input 105. Corresponding computation units of matrix processor 107 perform a matrix processor

instruction on the corresponding operands of the weight and data inputs in parallel.

[0027] In some embodiments, vector engine 111 is a vector computational unit that is

communicatively coupled to matrix processor 107. Vector engine 111 includes a plurality of

processing elements including processing element 113. In the figure shown, the small squares

inside vector engine 111 depict that vector engine 111 includes a plurality of processing elements

arranged as a vector. In some embodiments, the processing elements are arranged in a vector in the

same direction as data input 103. In some embodiments, the processing elements are arranged in a

vector in the same direction as weight input 105. In various embodiments, the data size of the

processing elements of vector engine 111 is the same size or larger than the data size of the

computation units of matrix processor 107. For example, in some embodiments, computation unit

109 receives two operands each 1 byte in size and outputs a result 4 bytes in size. Processing

element 113 receives the 4-byte result from computation unit 109 as an input 4 bytes in size. In

various embodiments, the output of vector engine 111 is the same size as the input to vector engine

111. In some embodiments, the output of vector engine 111 is smaller in size compared to the

input to vector engine 111. For example, vector engine 111 may receive up to 96 elements each 4

bytes in size and output 96 elements each 1 byte in size. In various embodiments, vector engine

11 1 performs quantization on the output result resulting in the output of vector engine 111 being

smaller in size compared to the input to vector engine 111. In various embodiments, the

quantization is performed as part of a single instruction. For example, a quantization and a non

linear function are performed as a single processor instruction. As described above, in some

embodiments, the communication channel from data input 103 and weight input 105 to matrix

processor 107 is 96-elements wide with each element 1 byte in size and matches the output size of

vector engine 111 (96-elements wide with each element 1 byte in size).

[0028] In some embodiments, the processing elements of vector engine 111, including

processing element 113, each include an arithmetic logic unit (ALU) (not shown). For example, in

some embodiments, the ALU of each processing element is capable of performing arithmetic

operations. In some embodiments, each ALU of the processing elements is capable of performing

in parallel a rectified linear unit (ReLU) function and/or scaling functions. In some embodiments,

each ALU is capable of performing a non-linear function including non-linear activation functions.

In various embodiments, each processing element of vector engine 1 1 1 includes one or more flip-

flops for receiving input operands. In some embodiments, each processing element has access to a

slice of a vector engine accumulator and/or vector registers of vector engine 111. For example, a

vector engine capable of receiving 96-elements includes a 96-element wide accumulator and one or

more 96-element vector registers. Each processing element has access to a one-element slice of the

accumulator and/or vector registers. In some embodiments, each element is 4-bytes in size. In

various embodiments, the accumulator and/or vector registers are sized to fit at least the size of an

input data vector. In some embodiments, vector engine 111 includes additional vector registers

sized to fit the output of vector engine 111.

[0029] In some embodiments, the processing elements of vector engine 111 are configured

to receive data from matrix processor 107 and each of the processing elements can process the

received portion of data in parallel. As one example of a processing element, processing element

113 of vector engine 11 1 receives data from computation unit 109 of matrix processor 107. In

various embodiments, vector engine 111 receives a single vector processor instruction and in turn

each of the processing elements performs the processor instruction in parallel with the other

processing elements. In some embodiments, the processor instruction includes one or more

component instructions, such as a load, a store, and/or an arithmetic logic unit operation. In various

embodiments, a no-op operation may be used to replace a component instruction.

[0030] In the example shown, the dotted arrows between data input 103 and matrix

processor 107, weight input 105 and matrix processor 107, matrix processor 107 and vector engine

111, and vector engine 111 and post-processing unit 115 depict a coupling between the respective

pair of components that is capable of sending multiple data elements such as a vector of data

elements. As an example, the communication channel between matrix processor 107 and vector

engine 111 may be 96 x 32 bits wide and support transferring 96 elements in parallel where each

element is 32 bits in size. As another example, the communication channel between vector engine

111 and post-processing unit 115 may be 96 x 1 byte wide and support transferring 96 elements in

parallel where each element is 1 byte in size. In various embodiments, data input 103 and weight

input 105 are coupled to a memory module (not shown in Figure 1) and may each receive input

data from the memory module. In some embodiments, vector engine 111 is additionally coupled to

a memory module (not shown in Figure 1) and may receive input data from the memory module in

addition or alternatively to input from matrix processor 107. In the various embodiments, a

memory module is typically a static random access memory (SRAM).

[0031] In some embodiments, one or more computation units of matrix processor 107 may

be grouped together into a lane such that matrix processor 107 has multiple lanes. In various

embodiments, the lanes of matrix processor 107 may be aligned with either data input 103 or

weight input 105. For example, a lane aligned with weight input 105 includes a set of computation

units that are configured to receive as input every operand of weight input 105. Similarly, a lane

aligned with data input 103 includes a set of computation units that are configured to receive as

input every operand of data input 103. In the example shown in Figure 1, the lanes are aligned

along weight input 105 in a vertical column and each lane feeds to a corresponding lane of vector

engine 111. In some embodiments, each lane is a vertical column of sub-circuits that include

multiply, add and/or accumulate, and shift functionality. In some embodiments, matrix processor

107 includes a matrix of tiles and each tile is a matrix of computation units. For example, a 96 x 96

matrix processor may include a matrix of 6 x 6 tiles, where each tile includes 16 x 16 computation

units. In some embodiments, a vertical lane is a single column of tiles. In some embodiments, a

horizontal lane is a single row of tiles. In various embodiments, the dimensions of the lane may be

configured dynamically and may be utilized for performing alignment operations on the input to

matrix processor 107, vector engine 1 1 1, and/or post-processing unit 115. In some embodiments,

the dynamic configuration is performed by or using control unit 101 and/or with using processor

instructions controlled by control unit 101.

[0032] In some embodiments, control unit 101 synchronizes the processing performed by

matrix processor 107, vector engine 1 1 1, and post-processing unit 115. For example, control unit

101 may send processor specific instructions to each of matrix processor 107, vector engine 111,

and post-processing unit 115. Control unit 101 may send matrix processor instructions to matrix

processor 107. A matrix processor instruction may be a computational array instruction that

instructs a computational array to perform an arithmetic operation, such as a dot-product or dot-

product component, using specified operands from data input 103 and/or weight input 105. Control

unit 101 may send vector processor instructions to vector engine 111. For example, a vector

processor instruction may include a single processor instruction with a plurality of component

instructions to be executed together by the vector computational unit. Control unit 101 may send

post-processing instructions to post-processing unit 115. In various embodiments, control unit 101

synchronizes data that is fed to matrix processor 107 from data input 103 and weight input 105, to

vector engine 111 from matrix processor 107, and to post-processing unit 115 from vector engine

111. In some embodiments, control unit 101 synchronizes the data between different components

of microprocessor system 100 including between data input 103, weight input 105, matrix

processor 107, vector engine 111, and/or post-processing unit 115 by utilizing processor specific

memory, queue, and/or dequeue operations. In some embodiments, data and instruction

synchronization is performed by control unit 101. In some embodiments, data and instruction

synchronization is performed by control unit 101 that includes one or more sequencers to

synchronize processing between matrix processor 107, vector engine 111, and/or post-processing

unit 115.

[0033] In some embodiments, matrix processor 107 and vector engine 111 are utilized for

processing convolution layers. In some embodiments, vector engine 111 is utilized for performing

non- linear functions such as an activation function on the output of matrix processor 107. For

example, matrix processor 107 may be used to calculate a dot-product and vector engine 111 may

be used to perform an activation function such as a rectified linear unit (ReLU) or sigmoid

function. In some embodiments, post-processing unit 115 is utilized for performing pooling

operations. In some embodiments, post-processing unit 115 is utilized for formatting and storing

the processed data to memory and may be utilized for synchronizing memory writing latency.

[0034] Figure 2 is a block diagram illustrating an embodiment of a microprocessor system

for performing machine learning processing. In the example shown, microprocessor system 200

includes control unit 201, vector input 203, vector engine input queue 207, vector engine 211, and

post-processing unit 215. Vector engine input queue 207 includes a plurality of computation units

including computation units 209 and 221-229 and vector engine 2 11 includes a plurality of

processing elements including processing elements 2 13 and 23 1. Vector input 203 is an input

module for feeding data into vector engine input queue 207. In some embodiments, vector input

203 includes an input data formatter, a cache or buffer, and/or a logic circuit for preparing data for

vector engine input queue 207. For example, vector input 203 may prepare N operands from a two-

dimensional array to be processed by vector engine 2 11 utilizing vector engine input queue 207 as a

first-in-first-out (FIFO) input queue. In some embodiments, vector input 203 is coupled to memory

(not shown in Figure 2), such as static random access memory (SRAM) for retrieving data.

[0035] In various embodiments, control unit 201, vector input 203, vector engine input

queue 207, vector engine 2 11, and post-processing unit 215 are, respectively, control unit 101, data

input 103, matrix processor 107, vector engine 111, and post-processing unit 115 of Figure 1. For

example, matrix processor 107 of Figure 1 may be used to implement an input queue such as vector

engine input queue 207 by receiving data from data input 103 of Figure 1 and repeatedly shifting

each vector of input towards vector engine 111 of Figure 1.

[0036] In some embodiments, vector engine input queue 207 is a computational array unit

and includes a matrix of computation units whose columns are first-in-first-out (FIFO) queues. In

the example shown, vector engine input queue 207 is an input queue for vector input 203 and

functions as a wide first-in-first-out (FIFO) queue to feed multiple data elements from vector input

203 to vector engine 2 11. For example, computation units 221-229 make up a vertical column of

computation units that work together as a single FIFO queue. In various embodiments, vector

engine input queue 207 includes multiple FIFO queues made up of vertical columns of computation

units similar to computation units 221-229. For example, in an embodiment where vector engine

input queue 207 is 96 computation units wide, vector engine input queue 207 has 96 vertical

columns of computation units that correspond to 96 FIFO queues. As a further example, in an

embodiment where vector engine input queue 207 is 96 computation units long, vector engine input

queue 207 has FIFO queues that are 96 stages long.

[0037] In various embodiments, each first-in-first-out (FIFO) queue works in parallel and

shifts input received from the vector input 203 along the FIFO queue to vector engine 2 11. The

first row of computation units of vector engine input queue 207, which includes computation unit

221, is connected to the vector input 203. The first row of computation units is configured to

receive an entire row of data from vector input 203 in parallel. The last row of computation units

of vector engine input queue 207 is connected to the row of processing elements of vector engine

211. For example, the last row of computation units of vector engine input queue 207 includes

computation units 229 and 209. Computation unit 209 is connected to processing element 213 and

computation unit 229 is connected to processing element 23 1. Processing elements 213 and 23 1

are configured to receive the data output elements of computation units 209 and 229, respectively.

The processing elements of vector engine 2 11 receive an entire row of data from the last row of

computation units of vector engine input queue 207 in parallel. In various embodiments, when the

last row of computation units of vector engine input queue 207 has data available to dequeue, a

dequeue ready signal is received by vector engine 211 to indicate the vector engine input queue 207

is ready to receive a queue operation.

[0038] In the example described, the data from the first row of computation units is shifted

down the column to the next row of computation units in the logical direction towards vector

engine 2 11. For example, an input corresponding to a data element of vector input 203 is received

as an operand at computation unit 22 1 and shifted from computation unit 22 1 to computation unit

222, from computation unit 222 to computation unit 223, from computation unit 223 to

computation unit 224, and so forth, until an operand received at computation unit 22 1 is

incrementally shifted from computation unit 22 1 to computation unit 229 via the intermediate

computation units 222-228. In various embodiments, a data element pushed into the FIFO takes as

many shifts as the FIFO is deep in computation units. For example, a FIFO queue with 96

computation units and 96 stages long requires 96 shifts to dequeue an inserted element. In various

embodiments, each stage of the FIFO can shift an operand in parallel with the other stages. For

example, while each intermediate computation unit in the FIFO queue shifts its operand to the next

computation unit, the first computation unit can retrieve the next data element from vector input

203 and the last computation unit can dequeue its data element to be received by the corresponding

processing element of vector engine 2 11. In the example described, each computation unit along

each row of computation units works in parallel to shift its corresponding data element originally

received from vector input 203 to vector engine 2 11.

[0039] In some embodiments, vector engine input queue 207 is coupled to vector input 203

and one dimension of the matrix of computation units matches the dimension of vector input 203.

For example, in an embodiment with vector input 203 having a width of 96 bytes, vector engine

input queue 207 has a matrix of computation units with a width of at least 96 bytes. In some

embodiments, the width of vector input 203 and the corresponding width of the inputs to vector

engine input queue 207 are dynamically configurable. For example, vector input 203 can be

dynamically configured to 96 bytes or 96 x 2 bytes and the corresponding width of inputs to vector

engine input queue 207 are configurable to 96 bytes or 96 x 2 bytes, respectively. In some

embodiments, the configuration is performed using control unit 201 and/or processor instructions to

vector engine input queue 207.

[0040] In some embodiments, vector engine 211 is a vector computational unit that is

communicatively coupled to vector engine input queue 207. Vector engine 2 11 includes a plurality

of processing elements including processing elements 213 and 231. In the figure shown, the small

squares inside vector engine 211 depict that vector engine 211 includes a plurality of processing

elements arranged as a vector. In some embodiments, the processing elements are arranged in a

vector in the same direction as vector input 203. In various embodiments, the data size of the

processing elements of vector engine 211 is the same size or larger than the data size of the

computation units of vector engine input queue 207. For example, in some embodiments,

computation unit 209 receives an operand 1byte in size and dequeues an output to processing

element 213 also having a size of 1byte. Processing element 213 receives the 1byte output from

computation cell 209 as an input 1byte in size. In various embodiments, the output of vector

engine 211 is the same size as the input to vector engine 2 11. In various embodiments, the output

of vector engine 11 is smaller in size as compared to the input to vector engine 2 11. For example,

vector engine 211 may receive up to 96 elements each 4 bytes in size and output 96 elements each

1byte in size. In some embodiments, the communication channel from vector input 203 to vector

engine input queue 207 is 96 elements wide with each element 1byte in size and matches the

output size of vector engine 2 11 (96 elements wide with each element 1byte in size).

[0041] In some embodiments, the processing elements of vector engine 211, including

processing elements 213 and 23 1, each include an arithmetic logic unit (not shown) and are

described in further detail with respect to vector engine 111 of Figure 1. In some embodiments, the

processing elements of vector engine 2 11 are configured to receive data from vector engine input

queue 207 and each of the processing elements can process the received portion of data in parallel.

As one example of a processing element, processing elements 213 and 23 1 of vector engine 2 11

receive data from computation units 209 and 229, respectively, of vector engine input queue 207.

In various embodiments, vector engine 211receives a single vector processor instruction and in

turn each of the processing elements performs the processor instruction in parallel with the other

processing elements. In some embodiments, the processor instruction includes one or more

component instructions, such as a load, a store, and/or an arithmetic logic unit operation. In various

embodiments, a no-op operation may be used to replace a component instruction.

[0042] In the example shown, the dotted arrows between vector input 203 and vector engine

input queue 207, vector engine input queue 207 and vector engine 211, and vector engine 211 and

post-processing unit 215 depict a coupling between the respective pair of components that is

capable of sending multiple data elements. As an example, the communication channel between

vector engine input queue 207 and vector engine 2 11 may be 96 x 32 bits wide and support

transferring 96 elements in parallel where each element is 32 bits in size. As another example, the

communication channel between vector engine 2 11 and post-processing unit 215 may be 96 x 1

byte wide and support transferring 96 elements in parallel where each element is 1byte in size. In

various embodiments, vector input 203 is coupled to a memory module (not shown in Figure 2) and

may receive input data from the memory module. In some embodiments, vector engine 211 is

additionally coupled to a memory module (not shown in Figure 1) and may receive input data from

the memory module in addition or alternatively to input from vector engine input queue 207. In the

various embodiments, a memory module is typically a static random access memory (SRAM).

[0043] In some embodiments, one or more computation units of vector engine input queue

207 may be grouped together into a vertical column such that vector engine input queue 207 has

multiple vertical column lanes. In the example shown in Figure 2, the lanes are aligned along the

same vertical columns as the first-in- first-out (FIFO) queues described above and each lane feeds to

a corresponding lane of vector engine 2 11. In some embodiments, each lane is a vertical column of

sub-circuits that include multiply, add and/or accumulate, and shift functionality. In some

embodiments, a vertical lane is a single column of computation units. In some embodiments, a

vertical lane is a group of multiple columns of adjacent computation units. In various

embodiments, the dimensions of the lane may be configured dynamically and may be utilized for

performing alignment operations on the input to vector engine input queue 207, vector engine 2 11,

and/or post-processing unit 215. In some embodiments, the dynamic configuration is performed by

or using control unit 201 and/or with using processor instructions controlled by control unit 201.

[0044] In some embodiments, control unit 201 synchronizes the processing performed by

vector engine input queue 207, vector engine 211, and/or post-processing unit 215. For example,

control unit 20 1 may send processor specific instructions to each of vector engine input queue 207,

vector engine 211, and post-processing unit 215. Control unit 201 may send vector engine input

queue instructions to vector engine input queue 207. In some embodiments, vector engine input

queue instructions are a subset of the matrix processor instructions that matrix processor 107 of

Figure 1 is capable of responding to and is described further with respect to Figure 1. A vector

engine input queue instruction may be a computational array instruction that instructs a

computational array to perform a load operation, a shift operation, or other appropriate instruction

for interfacing with an input queue. Control unit 201 may send vector processor instructions to

vector engine 211. For example, a vector processor instruction may include a single processor

instruction with a plurality of component instructions to be executed together by the vector

computational unit. Control unit 201 may send post-processing instructions to post-processing unit

215. In various embodiments, control unit 201 synchronizes data that is fed to vector engine input

queue 207 from vector input 203, to vector engine 211 from vector engine input queue 207, and to

post-processing unit 215 from vector engine 2 11. In some embodiments, control unit 201

synchronizes the data between different components vector input 203, vector engine input queue

207, vector engine 2 11, and/or post-processing unit 215 by utilizing processor specific memory,

queue, and/or dequeue operations. The functionality of control unit 201 is described in further

detail with respect to control unit 101 of Figure 1.

[0045] In some embodiments, control unit 201 is utilized to configure the size and number

of data elements to be received by vector engine input queue 207, vector engine 2 11, and/or post

processing unit 215. For example, in some embodiments, control unit 201 may be utilized to

configure the input to vector engine input queue 207 as 96 elements each of size 1 byte or other

appropriate variations such as 48 elements each of size 2 bytes, 96 elements each of size 2 bytes,

192 elements each of size 4 bits, etc. In some embodiments, vector engine input queue 207 is able

to output a data element with a size larger than it can receive by performing a sequence of load and

logical shift operations. For example, a 4-byte input data element is loaded into vector engine input

queue 207 by reading four sequential 1-byte portions of the 4-byte input data element and logically

shifting each byte to the appropriate bit fields. As another example, in some embodiments, control

unit 201 may be utilized to configure the input to vector engine 2 11 as 96 elements each of size 4

bytes, or other appropriate variations such as 96 elements each of size 1 byte, 48 elements each of

size 2 bytes, etc.

[0046] In various embodiments, post-processing unit 2 15 is utilized to perform post

processing of output from vector engine 2 11. The post-processing functionality of post-processing

unit 2 15 is described in further detail with respect to post-processing unit 115 of Figure 1.

[0047] Figure 3 is a block diagram illustrating an embodiment of a microprocessor system

for performing machine learning processing. In the example shown, microprocessor system 300

includes control unit 301, memory 307, vector engine 3 11, and post-processing unit 315. In

various embodiments, memory 307 is typically a static random access memory (SRAM). In

various embodiments, post-processing unit 315 received input data from vector engine 311 and is

utilized to perform post-processing of output from vector engine 3 11. The post-processing

functionality of post-processing unit 315 is described in further detail with respect to post

processing unit 115 of Figure 1.

[0048] The block diagram of Figure 3 depicts a system architecture embodiment where

vector engine 311 is coupled to memory 307 and may retrieve data directly from memory 307. In

various embodiments, the size of the communication channel between memory 307 and vector

engine 3 11 may be configured to transfer multiple data elements in parallel from memory 307 to

vector engine 3 11. For example, in an embodiment where vector engine 311 is capable of

receiving 96 elements each of 32 bits in size in parallel, the size of the communication channel

between memory 307 and vector engine 311 is configured to transfer 96 elements each of 32 bits in

size from memory 307 to vector engine 311 in parallel. In some embodiments, memory 307

includes a data formatter (not shown) which may include a data cache or buffer and/or a logic

circuit for formatting data from memory prior to transfer to vector engine 3 11. For example, data

elements of size 1 byte may be stored on word boundaries in memory 307 and the data formatter is

utilized to format and/or mask the data to byte boundaries. In various embodiments, control unit

301, vector engine 3 11, and post-processing unit 315 are, respectively, control unit 101, vector

engine 111, and post-processing unit 115 of Figure 1. In various embodiments, vector engine 311

may be further coupled to a matrix processor (not shown) as described with respect to matrix

processor 107 of Figure 1.

[0049] In some embodiments, vector engine 311 is a vector computational unit that is

communicatively coupled to memory 307. Vector engine 311 includes a plurality of processing

elements including processing element 313. In the figure shown, the small squares inside vector

engine 311 depict that vector engine 311 includes a plurality of processing elements arranged as a

vector. In some embodiments, the processing elements of vector engine 3 11, including processing

element 313, each include an arithmetic logic unit (not shown). The processing elements of vector

engine 3 11 are configured to receive data from memory 307 and each of the processing elements

can process the received portion of data in parallel. In various embodiments, vector engine 311

receives a single vector processor instruction and in turn each of the processing elements performs

the processor instruction in parallel with the other processing elements. In some embodiments, the

processor instruction includes one or more component instructions, such as a load, a store, and/or

an arithmetic logic unit operation. The functionality of vector engine 311 is described in further

detail with respect to vector engine 111 and 11 of Figures 1 and 2, respectively.

[0050] In some embodiments, control unit 301 synchronizes the processing performed by

vector engine 311 and post-processing unit 315, and access to memory 307. For example, control

unit 301 may send processor specific instructions to each of vector engine 311 and post-processing

unit 315. In some embodiments, control unit 301 may send vector processor instructions to vector

engine 3 11. For example, a vector processor instruction may include a single processor instruction

with a plurality of component instructions to be executed together by the vector computational unit.

In some embodiments, control unit 301 may send post-processing instructions to post-processing

unit 315. In various embodiments, control unit 301 synchronizes data that is received by vector

engine 3 11 from memory 307 and received by post-processing unit 315 from vector engine 3 11. In

some embodiments, control unit 301 synchronizes the data between different components vector

engine 311 and/or post-processing unit 315 by utilizing vector engine and/or post-processing unit

processor specific operations. The functionality of control unit 301 is described in further detail

with respect to control unit 101 of Figure 1.

[0051] In some embodiments, control unit 301 is utilized to configure the size and number

of data elements to be received by vector engine 311 and/or post-processing unit 315. For example,

in some embodiments, control unit 301 may be utilized to configure vector engine 3 11 to receive

96 data elements each of size 4 bytes, or other appropriate variations such as 96 elements each of

size 1 byte, 48 elements each of size 2 bytes, etc. As described further with respect to Figures 1

and 2, the dotted arrows between vector engine 311 and post-processing unit 315 depict a coupling

between the respective pair of components that is capable of sending multiple data elements. As an

example, the communication channel between vector engine 3 11 and post-processing unit 315 may

be 96 x 1 byte wide and support transferring 96 elements in parallel where each element is 1 byte in

size.

[0052] Figure 4A is a block diagram illustrating an embodiment of a vector computational

unit for performing machine learning processing. In the example shown, microprocessor system

400 includes vector computational unit 401, input bus 4 11, and output bus 431. Input to vector

computational unit 40 1 arrives from input bus 4 11. Output from vector computational unit 401 is

written to output bus 431. In some embodiments, input bus 4 11 and output bus 43 1 are a single bus

that includes the functionality of both input bus 411 and output bus 431. In various embodiments,

input bus 4 11 and output bus 43 1 are wide data buses that allow the transfer of multiple data

elements in parallel. For example, input bus 4 11 may be 96 x 32 bits wide and output bus 43 1 may

be 96 bytes wide to accommodate the parallel processing functionality of computational unit 401.

In some embodiments, vector computational unit 401 receives vector computational unit

instructions via input bus 4 11. In some embodiments, vector computational unit 401 receives

vector computational unit instructions via a communication channel other than input bus 4 11 such

as an instruction bus (not shown).

[0053] In various embodiments, vector computational unit 401 is vector engine 1 1 1, 2 11,

and/or 311 of Figures 1, 2, and 3, respectively. In some embodiments, input bus 4 11 is connected

to matrix processor 107 of Figure 1, vector engine input queue 207 of Figure 2, and/or memory 307

of Figure 3. In some embodiments, output bus 43 1 is connected to post-processing units 115, 215,

and/or 315 of Figures 1, 2, and 3, respectively. In various embodiments, vector computational unit

401 is bi-directionally coupled to a control unit (not shown) of microprocessor system 400 external

to vector computational unit 401, such as control units 101, 201, and/or 301 of Figures 1, 2, and 3,

respectively. In various embodiments, the control unit of microprocessor system 400 sends vector

computational unit instructions to vector computational unit 401. In some embodiments, the

control unit of microprocessor system 400 includes one or more sequencers for synchronizing

instructions and data to vector computational unit 401.

[0054] In the example shown, vector computational unit 401 includes registers 42 1, vector

engine control logic 423, input buffer 425, arithmetic logic units (ALUs) 427, and output buffer

429. Input data from input bus 4 11 is received by input buffer 425 and output written to output bus

431 is written from output buffer 429. In some embodiments, input buffer 425 and output buffer

429 are data buffers or caches and provide memory synchronization functionality. For example, in

some embodiments, input reads from input bus 4 11 and/or output writes to output bus 43 1 have an

unpredictable latency that can be smoothed out by utilizing input buffer 425 to receive input data

and output buffer 429 for storing calculated results. As another example, output bus 43 1 may not

be available when output from ALUs 427 is ready for writing. In some embodiments, output buffer

429 allows ALUs 427 to continue processing pending data until output bus 43 1 is available for

writing the results stored at output buffer 429. In various embodiments, input bus 4 11 and output

bus 43 1 are communication channels controlled by a control unit (not shown) of microprocessor

system 400.

[0055] As described above, in various embodiments, a vector computational unit includes a

plurality of processing elements. In some embodiments, each processing element includes

individual functionality for loading data, storing data, and performing arithmetic logic unit

operations. The individual processing elements are not depicted in the block diagram of Figure 4A.

In various embodiments, arithmetic logic units (ALUs) 427 include the corresponding arithmetic

logic unit (ALU) of each processing unit. Similarly, input buffer 425 and output buffer 429 include

corresponding input buffers and output buffers for each processing unit. In various embodiments,

ALUs 427 include ALU logic for processing every element of an input vector to vector

computational unit 40 1 in parallel. In some embodiments, ALUs 427 include logic for quantizing

the ALU result. In various embodiments, the ALU logic, for example, logic for performing a non

linear function and quantization, can be performed in response to a single processor instruction.

[0056] In various embodiments, registers 42 1 includes registers for implementing the

functionality of vector computational unit 401. For example, registers 421 may be used to store

operands for performing vector computational unit instructions, to implement bit masks, and to

reference vector elements using different memory-sized register aliases, among other appropriate

functionality. In some embodiments, registers 421 include arithmetic instruction vector registers;

mask registers; registers for performing arithmetic operations such as add, subtract, and floating

point operations; and/or registers for aliasing vector elements. In some embodiments, the registers

used for aliasing vector elements are also utilized for performing arithmetic operations.

[0057] In some embodiments, registers 421 include arithmetic instruction vector registers.

For example, registers may be used as operands for load operations, store operations, and

arithmetic logic unit (ALU) operations. As another example, in some embodiments, an ALU

operation may take as arguments up to four vector registers, three as source registers and one as a

destination register. In various embodiments, the vector registers used by processor operations are

aliased to different vector elements based on the size of the vector element. For example, in some

embodiments, a different set of vector registers are available for operating on 8-bit, 16-bit, 32-bit,

and/or floating point values. In some embodiments, the set of vector registers for 32-bit values is

also used for floating point values. In various embodiments, 32-bit vector registers are aliased to

16-bit vector registers and 8-bit vector registers. For example, one 32-bit vector register is aliased

to two 16-bit vector registers and four 8-bit vector registers. As another example, a vector

computational unit 401 with eight 96 x 32-bit vector registers (registers RD0-RD7) is aliased to

sixteen 96 x 16-bit vector registers (registers RW0-RW15), and thirty-two 96 x 8-bit vector

registers (registers RB0-RB3 1). RDO is a 96 x 32-bit vector register, RWO is a 96 x 16-bit vector

register, and RBO is a 96 x 8-bit vector register. A further example of vector register aliasing is

depicted in Figure 4B.

[0058] In some embodiments, registers 42 1 include one or more bit mask registers based on

the number of processing elements of vector computational unit 40 1. For example, a vector

computational unit with 96 processing elements may include one or more 96-bit mask registers. In

various embodiments, a mask register may be set by loading a bit-mask from memory. A mask

register may be used to store the results of logical operations performed on input data to vector

computational unit 401.

[0059] In some embodiments, registers 42 1 include registers for performing arithmetic

operations such as add, subtract, and floating point operations. For example, in some

embodiments, vector computational unit 401 includes registers for storing carry-out bits for vector

add and subtract instructions and status bits corresponding to floating point instructions.

[0060] In some embodiments, vector computational unit 401 includes an instruction buffer

(not shown) for storing a sequence of vector computational unit instructions. In some

embodiments, the instruction buffer is a command queue. In various embodiments, the instruction

buffer includes one or more pointers to reference the current and/or last instruction to be performed.

In various embodiments, the instruction buffer acts as a cache of vector computational unit

instructions. For example, one or more vector computational unit instructions are loaded into an

instruction buffer of vector computational unit 401 and cached until the instructions can be

executed. As instructions are executed and no longer needed, new instructions may be loaded into

the instruction buffer. In some embodiments, the vector computational unit instructions are

received from an external instruction command queue via a control logic (not shown) of

microprocessor system 400.

[0061] In some embodiments, vector computational unit 40 1 includes a vector engine

control logic 423. Vector engine control logic 423 is utilized to implement the functionality of the

vector computational unit 401 including fetching vector computational unit instructions, decoding

the instructions, and/or executing the instructions. In various embodiments, the vector engine

control logic 423 includes logic for reading, writing, masking, and/or aliasing the data via input

buffer 425, output buffer 429, and registers 421. In some embodiments, vector computational unit

401 receives a dequeue ready signal and determines using vector engine control logic 423 that data

is available via input bus 4 11. For example, vector engine control logic 423 may dequeue data

from an input first-in- first-out queue (not shown) attached to input bus 4 11 on receipt of a dequeue

ready signal.

[0062] Figure 4B is a table illustrating an exemplary aliasing of vector registers. Table 450

illustrates the aliasing of vector registers for a vector computational unit embodiment with eight 96

x 32-bit vector registers (registers RD0-RD7) aliased to sixteen 96 x 16-bit vector registers

(registers RW0-RW15), and thirty-two 96 x 8-bit vector registers (registers RB0-RB3 1). In some

embodiments, the vector registers in Table 450 are the vector registers of registers 421 of vector

computational unit 401 of Figure 4A. In the example shown, row 451 includes columns for the

bytes 0, 1, 2, and 3 that are aliased to the respective registers listed in the rows below it. Rows 453,

463, and 473 correspond to 96 x 32-bit vector registers RDO, RDl, and RD7. Rows 455, 465, and

475 correspond to 96 x 16-bit vector registers RW0-3 and RW14-15. Rows 457, 467, and 477

correspond to 96 x 8-bit vector registers RBO-7 and RB28-31. In the example, bytes 0-3 are one of

the 96 lanes of a vector computational unit such as vector engine 111, 2 11, and/or 311 of Figures 1,

2, and 3, respectively.

[0063] In the example shown, table 450 illustrates vector register aliasing for a single lane

of the 96 lanes of a vector computational unit embodiment. The 96 x 32-bit vector register RDO

utilizes four bytes ordered from byte 0 to byte 3. The 96 x 16-bit vector registers RW0 and RW1

are aliased to 2 bytes each. Vector register RW0 is aliased to byte 0 and byte 1 and vector register

RW1 is aliased to byte 2 and byte 3. The 96 x 8-bit vector registers RB0-RB3 are aliased to 1 byte

each corresponding to bytes 0-3, respectively. Similarly, the 96 x 32-bit vector register RDl is

aliased to the 96 x 16-bit vector registers RW2 (bytes 0 and 1) and RW3 (bytes 2 and 3), and the 96

x 8-bit vector registers RB4-RB7 for bytes 0-3, respectively. As another example, the 96 x 32-bit

vector register RD7 is aliased to the 96 x 16-bit vector registers RW14 (bytes 0 and 1) and RW15

(bytes 2 and 3), and the 96 x 8-bit vector registers RB28-RB3 1 for bytes 0-3, respectively.

[0064] In various embodiments, vector computational unit instructions operate on all 96

lanes of a vector register in parallel. For example, for each of the 96 lanes, vector register RBO

operates on byte 0, vector register RB5 operates on byte 1, vector register RW2 operates on bytes 0

and 1, vector register RW15 operates on bytes 2 and 3, and vector register RD7 operates on bytes

0-3 in parallel.

[0065] Figure 5 is a flow diagram illustrating an embodiment of a process for determining

processor instructions for a microprocessor system. In some embodiments, the process of Figure 5

converts a software program written with a high level programming language into a sequence of

computational array and vector computational unit instructions for a microprocessor system with a

computational array and a vector computational unit. In various embodiments, the microprocessor

system is microprocessor system 100 of Figure 1, a computational array is matrix processor 107 of

Figure 1, and a vector computational unit is vector engine 111 of Figure 1. In various

embodiments, the process of Figure 5 is utilized to implement applications relying on machine

learning including applications that perform inference using a machine learning model such as self-

driving and driver-assisted automobiles.

[0066] At 501, a determination is made on the processing to be performed and the subset of

processing to be assigned to different co-processing components such as a computational array, a

vector computational unit, and/or a post-processing unit. In various embodiments, the processing is

assigned based on the functionality and efficiency of the different co-processing components. For

example, certain matrix-related operations are assigned to a computational array and operations

involving non-linear functions such as activation functions may be assigned to a vector

computational unit. In some embodiments, pooling operations are assigned to a post-processing

unit. As another example, in some embodiments, at 501, a determination is made that a

convolution operation requires a dot-product operation and that the dot-product operation best

utilizes matrix processing performed by a computational array. In some embodiments, this

determination is performed by compiling a machine learning application to target the

microprocessor system described herein.

[0067] At 503, one or more matrix processor instructions are determined that correspond to

the processing determined and assigned at 501. For example, the dot-product operation determined

at 501 to be performed by a matrix processor is converted to one or more matrix processer

instructions. In various embodiments, the matrix processor instructions are computational array

instructions. As an example, the computational array instructions may require that one or more

data vectors are received from a data input component, such as data input 103 of Figure 1, and one

or more weight vectors are received from a corresponding weight input component, such as weight

input 105 of Figure 1. Additional computational array instructions may include the multiply,

accumulate, and shift operations for processing a dot-product operation. For example, one or more

dot-product component operations may be used to calculate a dot-product result. In various

embodiments, the computational array instructions are directed to processing performed on

received input data by the corresponding computation units of the computational array. In some

embodiments, additional computational array instructions include instructions for preparing the

dot-product result for processing by the vector computational unit.

[0068] At 505, a determination is made regarding the vector engine instructions to be

performed by the vector computational unit. For example, operations related to an activation

function determined at 501 to be performed by a vector engine are converted to one or more vector

engine instructions. In various embodiments, the vector engine instructions are vector

computational unit instructions. As an example, the vector computational unit instructions may

require that one or more data vectors are received from a computational array, such as matrix

processor 107 of Figure 1. Additional vector computational unit instructions may include

operations for performing a non-linear activation function, such as a rectified linear unit (ReLu)

function. In various embodiments, the vector computational unit instructions are directed to

processing performed on received input data by the corresponding processing elements of the

vector computational unit. In some embodiments, additional vector computational unit instructions

include instructions for preparing the result of the processing elements for post-processing by the

post-processing unit.

[0069] In various embodiments, each vector computational unit instruction is a single

processor instruction that specifies a plurality of component instructions to be executed together by

the vector computational unit. The execution of the plurality of component instructions is

performed by the processing elements of the vector computational unit in parallel on different data

input elements in response to a single vector computational unit instruction. For example, in some

embodiments, a single processor instruction includes three component instructions: a separate load,

arithmetic logic unit, and store instruction. The three component instructions are received and

executed by the vector computational unit. In some embodiments, the bundling of component

instructions into a single processing instruction is performed at 505. In various embodiments, the

order and selection of component instructions for bundling into a vector computational unit

instruction is based on determined data hazards.

[0070] At 507, a determination is made regarding the post-processing instructions to be

performed by the post-processing unit. For example, operations related to post-processing

functionality are determined at 501 to be performed by a post-processing unit and are converted to

one or more post-processing instructions. As an example, the post-processing instructions may

require that one or more data vectors are received from a vector computational unit, such as vector

engine 111 of Figure 1. Additional post-processing instructions may include operations for

performing pooling layer functionality, such as a maxpooling. In various embodiments, post

processing instructions may include instructions for configuring the pooling functionality such as

kernel size, stride, and/or spatial extent, among others. In some embodiments, additional post

processing instructions include instructions for preparing and writing out the results of post

processing.

[0071] At 509, the sequence corresponding to the execution of the collection of co

processor instructions determined at 503, 505, and 507 is scheduled. For example, the relative

order and/or sequence of the respective processor instructions for the various co-processors, such as

computational array, a vector computational unit, and/or a post-processing unit, is determined. In

some embodiments, the sequence depends on the interaction and dependencies between the co

processors. For example, the input to a vector computational unit may depend on the availability of

output results from a computational array. In various embodiments, dependencies including data

hazards are determined and accounted for. For example, in various embodiments, vector

computational unit instructions include a plurality of component instructions and can be executed

such that multiple vector computational unit instructions are executed in parallel. Data hazards

based on unavailable data resources are determined and accounted for. For example, no-ops may

be inserted into the component instructions of a vector computational unit instruction to allow a

load operation to complete before an arithmetic logic unit operation that depends on the completion

of the load operation is performed. In some embodiments, the bundling of component instructions

into a single vector computational unit instruction is determined at 509. In some embodiments,

some or all of the instruction scheduling, such as the ordering of co-processor instructions, is

performed at 503 and 505 for a matrix processor and vector engine, respectively. For example, in

some embodiments, the bundling of component instructions for each single vector computational

unit instruction is determined at 505.

[0072] In some embodiments, a control unit and/or one or more sequencers of a

microprocessor system are utilized to initiate and coordinate the processing of the collection of c o

processor instructions. For example, the instruction sequence determined at 509 is utilized by a

control unit, such as control unit 101 of Figure 1, and/or by one or more sequencers to issue the

corresponding co-processor instructions to a computational array such as matrix processor 107 of

Figure 1, a vector computational unit such as vector engine 111 of Figure 1, and/or a post

processing unit such as post-processing unit 113 of Figure 1. In some embodiments, the

functionality of one or more sequencers is performed by a control unit. For example, in some

embodiments, the control unit includes an execute sequencer, memory access sequencers, network

sequencers, and/or vector engine sequencers, among others.

[0073] Figure 6A is a flow diagram illustrating an embodiment of a process for the running

execution of a vector computational unit. The process of Figure 6A may be performed by a vector

computational unit to process elements of a vector in parallel. In various embodiments, a vector

computational unit is vector engine 111, 2 11, 3 11, and/or vector computational unit 401 of Figures

1, 2, 3, and 4A, respectively. In some embodiments, the process of Figure 6A is initiated by a

control unit such as control unit 101 of Figure 1. In various embodiments, the transition between

the steps of the process in Figure 6A is performed by a control logic of the vector computational

unit such as vector engine control logic 423 of Figure 4A.

[0074] At 60 1, a vector engine instruction is retrieved. In various embodiments, a vector

engine instruction is a vector computational unit instruction and specifies a plurality of component

instructions. For example, an instruction triad is a single vector computational unit instruction

specifying up to three component instructions. An example instruction triad includes a load

operation, an arithmetic logic unit operation, and a store operation as a single instruction. At 601,

once the instruction is retrieved, the process continues to both 603 and 605.

[0075] At 603, a determination is made as to whether additional instructions are pending.

For example, the next vector engine instruction may be available and ready for retrieving. As

another example, an instruction buffer for caching pending instructions may be empty and requires

retrieving and/or waiting for the next available instruction. In some embodiments, the availability

of additional instructions is based on inspecting a pointer referencing the last valid instruction in

the instruction buffer. Processing proceeds to step 609 in response to no available additional

instructions. Processing proceeds back to 601 in response to the availability of one or more

additional instructions.

[0076] At 605, the vector engine instruction retrieved at 601 is decoded. In various

embodiments, a single vector engine instruction specifies one or more component instructions. In

various embodiments, the instruction and the component instructions are decoded. For example, an

instruction triad containing a load, an arithmetic logic unit, and a store component instruction is

decoded into the separate component operations. In some embodiments, the decoding determines

both the opcode and the arguments corresponding to the opcode for each component operation. As

one example, a load component instruction contains both the opcode corresponding to a byte vector

dequeue operation and the corresponding destination vector register to store the vector of bytes as a

result of the dequeue. As another example, an add component instruction contains both the opcode

corresponding to a signed 16-bit add operation and the corresponding vector registers for the source

and destination arguments.

[0077] At 607, the instruction decoded at 605 is executed. In some embodiments, a single

vector engine instruction, which specifies multiple component instructions, is executed by the

processing elements of the vector computational unit. For example, a vector of processing

elements executes the single vector engine instruction decoded at 605. In some embodiments, each

of the component instructions of the single vector engine instruction is further executed in parallel

by each of the processing elements. For example, for each processing element, a load instruction

and an arithmetic logic unit instruction may be executed in parallel. In some embodiments, a load

instruction, an arithmetic logic unit instruction, and a store instruction may be executed in parallel.

For example, the following component operations are performed in parallel by each processing cell

of the vector engine: a vector of input data is loaded from an input accumulator into a vector

register, a floating point multiply operation is performed on two different vector registers by an

arithmetic logic unit (ALU), and a vector of 16-bit elements is stored from a vector register to

memory. In various embodiments, once the processing elements have finished execution of

component instructions, the processing for the vector engine instruction is complete.

[0078] At 609, the vector computational unit waits for the next instruction. For example,

the vector computational unit waits until an instruction buffer for caching pending instructions

contains a valid instruction to be executed. As another example, the vector computational unit

waits until the next instruction is received from memory and made available to the vector

computational unit. In some embodiments, the vector computational unit halts at 609 pending the

availability of an additional instruction. In various embodiments, the vector computational unit

may respond to interrupts at 609 while waiting for an additional instruction. In response to the

arrival of an additional instruction, processing continues back to 60 1.

[0079] Figure 6B is a flow diagram illustrating an embodiment of a process for processing

vector data by a vector computational unit. For example, Figure 6B illustrates the process applied

to vector data received by a vector computational unit from an input source such as a computational

array and/or a first-in-first-out (FIFO) queue. In some embodiments, the process of Figure 6B

illustrates the steps performed by a vector computational unit for performing a vector operation on

a vector input to compute a vector result. In various embodiments, the process of Figure 6B

utilizes a plurality of processing elements of a vector computational unit to perform processing on

elements of a vector in parallel. In various embodiments, vector computational unit is vector

engine 111, 211, 3 11, and/or vector computational unit 401 of Figures 1, 2, 3, and 4A, respectively.

[0080] At 651, a load operation is decoded and issued. In some embodiments, a load

operation is required to receive data into a vector computational unit. For example, in some

embodiments, a dequeue operation is a load operation that dequeues a vector of data elements from

a computational array to be received by the processing elements of the vector computational unit.

In various embodiments, the load operation may be one of multiple component instructions that

make up a single vector computational unit instruction. The decoding of the load operation

determines the specific type of load operation and the appropriate operations. For example, various

load operations exist to load different sized vector elements into different specified vector registers.

At 65 1, the load operation is decoded and issued to initiate the receiving of input data such as the

dequeuing of a vector of data results from a first-in-first-out (FIFO) queue.

[0081] At 653, the vector computational unit receives input data in the form of a vector as a

result of the load operation issued at 65 1. For example, the vector computation unit receives a

vector of input data elements from a computational array, such as matrix processor 107 of Figure 1,

a first-in-first-out (FIFO) queue, such as vector engine input queue 207 of Figure 2, or other

appropriate data source. In some embodiments, the input data is stored in an input buffer. In some

embodiments, the input buffer utilizes a set of flip-flops and/or one or more accumulators to store

the input data. An input buffer the size of the input vector may be utilized to store the input data so

that it can be loaded into one or more vector registers at step 655.

[0082] At 655, vector data received at 653 is loaded into the appropriate registers. For

example, the vector data read at 653 is loaded into the vector registers designated by the load

instruction. In some embodiments, register aliasing is used to determine how data is loaded into a

vector register. For example, data may be loaded into the same register's memory location but

aligned to byte, half-word, or word boundaries based on the instruction and aliased registers

utilized. In some embodiments, the loading of vector data into vector registers utilizes a bit mask,

such as a vector bit mask, to determine which bytes of a vector to load into which register memory

locations. For example, a 96-bit mask may be utilized to determine which elements of a vector

register should receive data.

[0083] At 657, a determination is made on whether additional data is needed. For example,

based on the current vector computational unit instruction, additional data may be needed before

performing an arithmetic logic unit (ALU) operation. In response to not needing additional data,

processing continues to 66 1. As an example, processing continues to 66 1 in the event the current

vector computational unit instruction includes an ALU component operation (such as an add

operation) that is not a no-op operation. In response to needing additional data, for example, a load

operation is pending and no ALU operation is pending, processing continues to 659. In some

embodiments, an instruction triad may replace an ALU operation with a no-op indicating that an

ALU operation should not be performed for the current instruction.

[0084] At 659, additional data is loaded into the vector computational unit for processing.

For example, additional input data, such as a vector of input weights, may be loaded by reading

memory, receiving the result of a matrix processor, dequeuing a first-in-first-out (FIFO) queue, or

other appropriate technique. In some embodiments, additional data may be loaded by reading a

memory such as a static random access memory (SRAM). In various embodiments, additional

components such as a read buffer may be utilized to synchronize the loading of data and/or to

account for read delays and latency. In various embodiments, the data loaded at 659 may be a

vector of input data, such as a vector of weight inputs.

[0085] At 66 1, a vector arithmetic logic unit (ALU) operation is performed. In various

embodiments, vector ALU operations include vector operations for add (signed and unsigned),

subtract (signed and unsigned), multiply, absolute value, and logical operators, among others.

Vector ALU operations may be performed on different operand sizes. Example operand sizes

include 8-bit, 16-bit, 32-bit, and floating point values. In some embodiments, the different operand

sizes are determined based on register aliasing and/or the opcode of the operation. For example, a

vector add operation on 8-bit operands utilizes 8-bit vector registers. As explained in more detail

with respect to Figures 4A and 4B, register aliasing allows the same memory location to be

referenced using different aliases. For example, a 32-bit block of memory can be referenced as a

single 4-byte operand, two 2-byte operands, or four 1-byte operands depending on the desired

result. In various embodiments, each processing element of the vector computational unit performs

the same ALU operation (e.g., add, subtract, multiply, etc.) in parallel with the other processing

elements. In some embodiments, the output result is a quantized version of the ALU result. For

example, the output result is a quantized version that requires fewer bits to represent than the ALU

result. In some embodiments, the ALU result is calculated using a result represented using fewer

bits than the input operands. For example, input operands may be 4-bytes each and an output result

may be 1-byte in size.

[0086] At 663, the vector result of the arithmetic logic unit (ALU) operation performed at

661 is written out of the vector computational unit. In some embodiments, the vector result is

written out utilizing an output buffer that allows processing to continue for the next ALU operation

in the event the output bus is not available to receive data. In some embodiments, the vector output

result is transferred to a post-processing unit such as post-processing units 115, 215, and/or 315 of

Figures 1, 2, and 3, respectively. For example, the result of performing an ALU operation is

written to a post-processing unit for performing post-processing pooling operations. In some

embodiments, the output vector result is written to memory such as static random access memory

(SRAM). In various embodiments, the output is written out as a vector of elements such as a 96-

element vector with each element having the size of 1byte.

[0087] Figure 7 is a block diagram illustrating an embodiment of an encoding format for a

vector computational unit instruction. In the example shown, vector computational unit instruction

710 depicts the encoding of multiple component instructions specified by a single instruction.

Vector computational unit instruction 740 further details the format of each of the multiple

component instructions specified by a single instruction. Vector computational unit instruction 710

is an encoded instruction triad and includes load operation 7 1 1, arithmetic logic unit (ALU)

operation 713, and store operation 715. Vector computational unit instruction 740 includes fields:

opcode 741, register 743, opcode 751, registers 753, opcode configuration field 755, immediate

field 757, opcode 761, and register 763. The fields for component instructions (corresponding to a

load operation, ALU operation, and store operation) depicted by vector computational unit

instruction 710 map to vector computational unit instruction 740. Vector computational unit

instruction 740 includes an encoded load operation (opcode 741 and register 743), arithmetic logic

unit operation (opcode 751, registers 753, opcode configuration field 755, and immediate field

757), and store operation (opcode 761 and register 763).

[0088] In some embodiments, a vector computational unit instruction is an instruction triad

specifying three component instructions. For example, a load operation, arithmetic logic unit

(ALU) operation, and store operation may be bundled into a single instruction using a 128-bit

format. In various embodiments, a larger or smaller bit format may be utilized to bundle the three

component instructions as appropriate. In some embodiments, load and store operations are

encoded into 13 bits and ALU operations are encoded into 64 bits. In various embodiments, any

remaining bits not used by the bundled load, store, and ALU operations are padding bits. In some

embodiments, opcodes are encoded into 8 bits, registers are encoded into 5 bits, and immediate

fields are encoded into 32 bits. In various embodiments, different length encodings may be utilized

as appropriate and are based on the instruction size, number of supported vector operations, number

of registers, vector size, and/or other appropriate factors. In some scenarios, a no-op operation is

used when one or more of the component instructions are not utilized.

[0089] In the example shown, the encoded load operation of vector computational unit

instruction 740 includes opcode 741 and register 743. Opcode 741 corresponds to a vector load

operation and register 743 is the corresponding destination vector register for the load operation.

For example, opcode 74 1 may be used to store the opcode for a dequeue operation that loads data

and register 743 is the destination register for storing the loaded data. In various embodiments, the

load operation is used to load a vector of input data into a vector register for processing by a vector

computational unit. In some embodiments, opcode 741 is an 8-bit field and register 743 is a 5-bit

field.

[0090] In the example shown, the encoded store operation of vector computational unit

instruction 740 includes opcode 761 and register 763. Opcode 761 corresponds to a vector store

operation and register 763 is the corresponding source vector register for which the store operation

should read a vector of data from. For example, opcode 76 1 may be used to store the opcode for a

store operation that stores data from register 763 to external memory such as static random access

memory (SRAM). In some embodiments, the start address of the memory used for storing is

maintained by an external sequencer or control unit using a write pointer to reference a memory

location. In some embodiments, the store operation is used to write a vector of data to an output

data bus. In some embodiments, opcode 761 is an 8-bit field and register 763 is a 5-bit field.

[0091] In the example shown, the encoded arithmetic logic unit (ALU) operation includes

opcode 751, registers 753, opcode configuration field 755, and immediate field 757. Opcode 751 is

used to encode an ALU opcode. For example, ALU opcodes may include opcodes that correspond

to vector operations for add (signed and unsigned), subtract (signed and unsigned), multiply,

absolute value, and logical operators, among others. Depending on the vector ALU operation, the

operation may utilize fields: registers 753, opcode configuration field 755, and immediate field 757.

In some embodiments, registers 753 specifies up to four vector registers including three source

registers and one destination register. In some embodiments, registers 753 is a 20-bit field and

utilizes 5 bits for each register.

[0092] In some embodiments, an encoded arithmetic logic unit (ALU) operation includes

opcode configuration field 755 that is utilized by certain ALU operations. In some embodiments,

opcode configuration field 755 is a 5-bit field and includes a register size field (2-bits), a mask bit

(1-bit), and an immediate valid bit (1-bit). For example, in some scenarios, the value stored in the

register size field (-bits) may be used to specify the size of the registers (e.g., 8-bits, 16-bits, or 32-

bits). As additional examples, a mask bit (1-bit) may be utilized to process immediate field 757 as

a bit mask and an immediate valid bit (1-bit) may be utilized to identify the validity of immediate

field 757. In various embodiments, immediate field 757 is a 32-bit field that is utilized for ALU

operations that require an immediate field. For example, a vector move operation may be

configured to move a 32-bit value from immediate field 757 to a destination vector register.

[0093] In some embodiments, a vector computational unit supports a vector mask move

instruction (not shown) to load a vector bit mask into a vector mask register. In some

embodiments, a vector mask move instruction includes a corresponding opcode field, a destination

register field, and an immediate field. As an example, the vector mask move loads a vector bit

mask stored in the immediate field to the vector mask register. In some embodiments, the size of

the vectors (e.g., 96 elements wide) supported by the vector computational unit requires a large

enough immediate field (e.g., 96-bits) to store the bit mask. In some embodiments, the vector mask

move instruction is not restricted to the encoding formats of vector computational unit instructions

710 and 740. For example, based on the size of the immediate field, the vector mask move may not

be bundled with other component instructions.

[0094] In various embodiments, the component instructions of vector computational unit

instructions are bundled together using the process of Figure 5. In some embodiments, the

encoding format of Figure 7 is utilized by a vector computational unit such as vector engine 111,

211, 3 11, and/or vector computational unit 401 of Figures 1, 2, 3, and 4A, respectively. In some

embodiments, a vector computational unit instruction is issued to a vector computational unit by a

sequencer of a microprocessor system or control unit containing a sequencer.

[0095] Figure 8 is a flow diagram illustrating an embodiment of a process for performing a

single vector computational unit instruction by a vector computational unit. The process of Figure

8 may be performed by a vector computational unit on elements of a vector in parallel utilizing the

processing elements of a vector computational unit. In some embodiments, the process of Figure 8

is performed by a vector computational unit such as vector engine 111, 2 11, 3 11, and/or vector

computational unit 401 of Figures 1, 2, 3, and 4A, respectively.

[0096] At 801, a vector computational unit instruction is fetched. In some embodiments,

the instruction is fetched from an instruction buffer and/or command queue. In various

embodiments, the instruction buffer includes one or more pointers to reference the current

instruction to be performed. In various embodiments, the instruction buffer acts as a cache of

vector computational unit instructions.

[0097] At 8 1, the vector computational unit instruction is decoded. For example, a vector

computational unit instruction that is an instruction triad is decoded into its three component

instructions. In various embodiments, the arguments and fields utilized by each component

instruction are decoded. For example, vector registers specified by a registers field, such as

registers 753 of Figure 7, are decoded into source and destination registers.

[0098] At 83 1, the component instructions are issued. In some embodiments, the issuing of

component instructions includes determining whether a resource and/or data hazards are present.

In the event hazards are present, in some embodiments, the vector computational unit waits for the

hazard to be resolved. For example, in the event of a resource hazard caused by a load operation in

the previous clock cycle, the vector computational unit waits one or more clock cycles for the load

to complete and for the resource to be available.

[0099] In some embodiments, the multiple component instructions are issued together and

executed in parallel. For example, the load operation, arithmetic logic unit (ALU) operation, and

store operation of an instruction triad are executed together and during the same clock cycle. In the

scenario where the component instructions are executed together, each of the steps corresponding

to executing a load operation (step 845), an ALU operation (step 855), and a store operation (step

865) along with corresponding no-op alternatives (steps 843, 854, and 863) are initiated in the same

clock cycle and execution proceeds in parallel.

[00100] In some embodiments, the different component instructions are executed with

staggered starts. For example, in some embodiments, the load operation is executed first, followed

by the arithmetic logic unit (ALU) operation, and then the store operation. In a staggered scenario,

the ALU operation of a first vector computational unit instruction may execute in parallel with the

load operation of the next vector computational unit instruction.

[00101] In various embodiments, different operations, including different arithmetic logic

unit (ALU) operations, take one or more clock cycles to complete and there is no guarantee that the

different operations complete by the end of the same clock cycle. In some embodiments, one or

more of the fetch (801), decode (step 821), and issue (step 83 1) steps may be performed during the

same instruction cycle.

[00102] At 841, a determination is made on whether the vector computational unit

instruction includes a load operation. For example, in some scenarios, a load operation may be

replaced with a no-op to indicate that no load operation should be performed. In response to a no-

op, processing continues to 843. In the event that a load operation exists, processing continues to

845.

[00103] At 843, a no-op is processed and no load operation is performed. For example, a

load instruction was not present in the instruction at 84 1 and instead the opcode for a no-op was

used.

[00104] At 845, a load operation is executed by the vector computational unit. For example,

a dequeue operation to load an input vector from a first-in-first-out queue, such as vector engine

input queue 207, is performed.

[00105] At 85 1, a determination is made on whether the vector computational unit

instruction includes an arithmetic logic unit (ALU) operation. For example, in some scenarios, an

ALU operation may be replaced with a no-op to indicate that no ALU operation should be

performed. In response to a no-op, processing continues to 853. In the event that an ALU

operation exists, processing continues to 855.

[00106] At 853, a no-op is processed and no arithmetic logic unit (ALU) operation is

performed. For example, an ALU instruction was not present in the instruction at 851 and instead

the opcode for a no-op was used.

[00107] At 855, an arithmetic logic unit (ALU) operation is executed by the vector

computational unit. For example, in response to a vector add operation, the arithmetic logic unit of

a vector computational unit performs a vector add operation to add the contents of two source

vector registers and store the result in a destination vector register. In some embodiments, the

arithmetic logic unit of the vector computational unit is arithmetic logic units (ALUs) 427 of Figure

4A.

[00108] At 861, a determination is made on whether the vector computational unit

instruction includes a store operation. For example, in some scenarios, a store operation may be

replaced with a no-op to indicate that no store operation should be performed. In response to a no-

op, processing continues to 863. In the event that a store operation exists, processing continues to

865.

[00109] At 863, a no-op is processed and no store operation is performed. For example, a

store instruction was not present in the instruction at 861 and instead the opcode for a no-op was

used.

[00110] At 865, a store operation is executed by the vector computational unit. For example

a store operation to store the vector data in a vector register to memory is performed.

[00111] Figure 9 is a diagram illustrating an exemplary instruction cycle of a vector

computational unit. The process of Figure 9 illustrates an example ordering and sequence of three

vector computational unit instructions performed in parallel but with staggered starts. In some

embodiments, the exemplary instruction cycle of Figure 9 is utilized by vector engine 111, 11,

311, and/or vector computational unit 401 of Figures 1, 2, 3, and 4A, respectively. In the example

of Figure 9, the component instructions bundled as a single instruction are executed with staggered

starts such that a load operation is executed first, followed by an arithmetic logic unit (ALU)

operation, and then a store operation. In some embodiments, sequential vector computational unit

instructions are pipelined but the component instructions are executed in parallel and do not follow

the staggered starts depicted in Figure 9.

[00112] In the example shown, a first instruction cycle 910 includes fetch step 9 11, a decode

step 921, an issue step 931, a load execution step 941, an arithmetic logic unit (ALU) execution

step 95 1, and a store execution step 96 1 corresponding to the first vector computational unit

instruction. A second instruction cycle 920 includes fetch step 923, a decode step 933, an issue

step 943, a load execution step 953, an arithmetic logic unit (ALU) execution step 963, and a store

execution step 973 corresponding to the second vector computational unit instruction. A third

instruction cycle 930 includes fetch step 935, a decode step 945, an issue step 955, a load execution

step 965, an arithmetic logic unit (ALU) execution step 975, and a store execution step 985

corresponding to the third vector computational unit instruction. In some embodiments, the dotted

vertical lines are clock cycle boundaries. In various embodiments, the steps within the same clock

cycle boundaries are started during the same clock cycle.

[00113] In some embodiments, the start of instruction cycles are staggered by one stage. For

example, first instruction cycle 910 is one stage ahead in processing compared to second instruction

cycle 920, and two stages ahead of third instruction cycle 930. During any given clock cycle,

different vector computational unit instructions can be utilizing the hardware resources associated

with the different stages: fetch, decode, issue, load execution, arithmetic logic unit (ALU)

execution, and store execution. As an example, issue stage 931, decode stage 933, and fetch stage

935 of first, second, and third instruction cycles 910, 920, and 930, respectively, execute during the

same clock cycle. As another example, store execution step 961, arithmetic logic unit (ALU)

execution step 963, and load execution step 965 of first, second, and third instruction cycles 910,

920, and 930, respectively, execute during the same clock cycle.

[00114] In some embodiments, the instruction cycle of a vector computational unit achieves

a throughput of one vector computational unit instruction per clock cycle. In some embodiments,

the fetch, decode, and/or issue steps are compressed into a single clock cycle. For example, in

some embodiments, an instruction buffer is utilized to minimize fetch times and a fetch and decode

step are performed together. In some embodiments, each stage of the instruction cycle may take

one or more clock cycles to complete. In some embodiments, the stages are themselves pipelined.

For example, in the event an execution step takes more than one cycle to complete, an execution

step may be pipelined to complete over multiple clock cycles. In some embodiments, multiple

execution steps may be processed in parallel in a pipelined manner and each execution step may

correspond to a different vector computational unit instruction. In some embodiments, fetch steps

911, 923, and 935 correspond to step 801 of Figure 8, decode steps 921, 933, and 945 correspond to

step 821 of Figure 8, issue steps 931, 943, and 955 correspond to step 831 of Figure 8, load

execution steps 941, 953 and 965 correspond to step 845 of Figure 8, arithmetic logic unit (ALU)

execution steps 951, 963, and 975 correspond to step 855 of Figure 8, and store execution steps

961, 973, and 985 correspond to step 865 of Figure 8.

[00115] In an alternative embodiment (not shown), the fetch, decode, and issues stages of an

instruction cycle are performed in the same order as Figure 9. In contrast with the exemplary

embodiment of Figure 9, the load, arithmetic logic unit (ALU), and store execution steps are

executed together and in parallel during the same clock cycle. For example, load execution step

941, ALU execution step 951, and store execution step 961 of the same vector computational unit

instruction are executed together.

[00116] Figure 10 is a block diagram illustrating an embodiment of a computation unit of a

computational array. In the example shown, computation unit 1000 includes input values weight

1002, data 1004, and Resultln 1006; signals ClearAcc signal 1008, Clock signal 1010,

ResultEnable signal 1012, ResultCapture signal 1014, and ShiftEn signal 1016; components

accumulator 1024, multiplexer 1026, shadow register 1028, multiplier 1030, and adder 1032; logic

1034, 1036, and 1038; and output value ResultOut 1050. In some embodiments, logic 1034, 1036,

and 1038 are AND gates. In some embodiments, additional signals are included as appropriate. In

various embodiments, the computation unit of Figure 10 is repeated for each of the plurality of

computation units, such as computation unit 109, of a computation array such as matrix processor

107 of Figure 1. Computation unit 1000 may be utilized to implement computational operations in

parallel. In various embodiments, each computation unit of a computational array performs

computations in parallel with the other computation units. In various embodiments, computation

unit 1000 is a sub-circuit of a matrix processor that includes the functionality for performing one or

more multiply, add, accumulate, and/or shift operations. For example, computation unit 1000 may

be a sub-circuit that includes the functionality for performing a dot-product operation. In various

embodiments, computation unit 1000 is computation unit 109 of Figure 1 and/or computation units

209, and/or 221-229 of Figure 2.

[00117] In some embodiments, Clock signal 1010 is a clock signal received by computation

unit 1000. In various embodiments, each computation unit of the computational array receives the

same clock signal and the clock signal is utilized to synchronize the processing of each

computation unit with the other computation units.

[00118] In the example shown, multiplier 1030 receives and performs a multiplication

operation on the input values data 1004 and weight 1002. The output of multiplier 1030 is fed to

adder 1032. Adder 1032 receives and performs an addition on the output of multiplier 1030 and the

output of logic 1034. The output of adder 1032 is fed to accumulator 1024. In some embodiments,

input values data 1004 and weight 1002 are lines that cross computation units and feed the

corresponding data and/or weight to neighboring computation units. For example, in some

embodiments, data 1004 is fed to all computation units in the same column and weight 1002 is fed

to all computation units in the same row. In various embodiments, data 1004 and weight 1002

correspond to input elements fed to computation unit 1000 from a data input 103 and a weight input

105, respectively. In various embodiments, data 1004 and weight 1002 correspond to input

elements fed to computation unit 1000 from a data hardware data formatter and a weight hardware

data formatter, respectively.

[00119] In some embodiments, ClearAcc signal 1008 clears the contents of accumulator

1024. As an example, accumulation operations can be reset by clearing accumulator 1024 and used

to accumulate the result of multiplier 1030. In some embodiments, ClearAcc signal 1008 is used to

clear accumulator 1024 for performing a new dot-product operation. For example, elements-wise

multiplications are performed by multiplier 1030 and the partial-dot-product results are added using

adder 1032 and accumulator 1024.

[00120] In various embodiments, accumulator 1024 is an accumulator capable of

accumulating the result of adder 1032 and indirectly the result of multiplier 1030. For example, in

some embodiments, accumulator 1024 is configured to accumulate the result of multiplier 1030

with the contents of accumulator 1024 based on the status of ClearAcc signal 1008. As another

example, based on the status of ClearAcc signal 1008, the current result stored in accumulator 1024

may be ignored by adder 1032. In the example shown, accumulator 1024 is a 32-bit wide

accumulator. In various embodiments, accumulator 1024 may be sized differently, e.g., 8-bits, 16-

bits, 64-bits, etc., as appropriate. In various embodiments, each accumulator of the plurality of

computation units of a computational array is the same size. In various embodiments, accumulator

1024 may accumulate and save data, accumulate and clear data, or just clear data. In some

embodiments, accumulator 1024 may be implemented as an accumulation register. In some

embodiments, accumulator 1024 may include a set of arithmetic logic units (ALUs) that include

registers.

[00121] In some embodiments, ResultEnable signal 1012 is activated in response to a

determination that data 1004 is valid. For example, ResultEnable signal 1012 may be enabled to

enable processing by a computation unit such as processing by multiplier 1030 and adder 1032 into

accumulator 1024.

[00122] In some embodiments, ResultCapture signal 1014 is utilized to determine the

functionality of multiplexer 1026. Multiplexer 1026 receives as input Resultln 1006, output of

accumulator 1024, and ResultCapture signal 1014. In various embodiments, ResultCapture signal

1014 is used to enable either Resultln 1006 or the output of accumulator 1024 to pass through as

the output of multiplexer 1026. In some embodiments, multiplexer 1026 is implemented as an

output register. In some embodiments, Resultln 1006 is connected to a computation unit in the

same column as computation unit 1000. For example, the output of a neighboring computation unit

is fed in as an input value Resultln 1006 to computation unit 1000. In some embodiments, the

input of a neighboring computation unit is the computation unit's corresponding ResultOut value.

[00123] In some embodiments, shadow register 1028 receives as input the output of

multiplexer 1026. In some embodiments, shadow register 1028 is configured to receive the output

of accumulator 1024 via multiplexer 1026 depending on the value of ResultCapture signal 1014. In

the example shown, the output of shadow register 1028 is output value ResultOut 1050. In various

embodiments, once a result is inserted into shadow register 1028, accumulator 1024 may be used to

commence new calculations. For example, once the final dot-product result is stored in shadow

register 1028, accumulator 1024 may be cleared and used to accumulate and store the partial result

and eventually the final result of a new dot-product operation on new weight and data input values.

In the example shown, shadow register 1028 receives a signal ShiftEn signal 1016. In various

embodiments, ShiftEn signal 1016 is used to enable or disable the storing of values in the shadow

register 1028. In some embodiments, ShiftEn signal 1016 is used to shift the value stored in

shadow register 1028 to output value ResultOut 1050. For example, when ShiftEn signal 1016 is

enabled, the value stored in shadow register 1028 is shifted out of shadow register 1028 as output

value ResultOut 1050. In some embodiments, ResultOut 1050 is connected to a neighboring

computation unit's input value Resultln. In some embodiments, the last cell of a column of

computation units is connected to the output of the computational array. In various embodiments,

the output of the computational array feeds into a vector engine such as vector engine 111 of Figure

1 for vector processing. For example, the output ResultOut 1050 of a computation cell such as

computation cell 109 of Figure 1 may be fed into a processing element of a vector engine such as

processing element 113 of vector engine 111 of Figure 1.

[00124] In the example shown, shadow register 1028 is 32-bits wide. In various

embodiments, shadow register 1028 may be sized differently, e.g., 8-bits, 16-bits, 64-bits, etc., as

appropriate. In various embodiments, each shadow register of the plurality of computation units of

a computational array is the same size. In various embodiments, shadow register 1028 is the same

size as accumulator 1024. In various embodiments, the size of multiplexer 1026 is based on the

size of accumulator 1024 and/or shadow register 1028 (e.g., the same size or larger).

[00125] In some embodiments, logic 1034, 1036, and 1038 receive signals, such as control

signals, to enable and/or configure the functionality of computation unit 1000. In various

embodiments, logic 1034, 1036, and 1038 are implemented using AND gates and/or functionality

corresponding to an AND gate. For example, as described above, logic 1034 receives ClearAcc

signal 1008 and an input value corresponding to the value stored in accumulator 1024. Based on

ClearAcc signal 1008, the output of logic 1034 is determined and fed to adder 1032. As another

example, logic 1036 receives ResultEnable signal 1012 and Clock signal 1010. Based on

ResultEnable signal 1012, the output of logic 1036 is determined and fed to accumulator 1024. As

another example, logic 1038 receives ShiftEn signal 1016 and Clock signal 1010. Based on

ShiftEn signal 1016, the output of logic 1038 is determined and fed to shadow register 1028.

[00126] In various embodiments, computation units may perform a multiplication, an

addition operation, and a shift operation at the same time, i.e., within a single cycle, thereby

doubling the total number of operations that occur each cycle. In some embodiments, results are

moved from multiplexer 1026 to shadow register 1028 in a single clock cycle, i.e., without the need

of intermediate execute and save operations. In various embodiments, the clock cycle is based on

the signal received at Clock signal 1010.

[00127] In various embodiments, input values weight 1002 and data 1004 are 8-bit values.

In some embodiments, weight 1002 is a signed value and data 1004 is unsigned. In various

embodiments, weight 1002 and data 1004 may be signed or unsigned, as appropriate. In some

embodiments, Resultln 1006 and ResultOut 1050 are 32-bit values. In various embodiments

Resultln 1006 and ResultOut 1050 are implemented using a larger number of bits than input

operands weight 1002 and data 1004. By utilizing a large number of bits, the results of multiplying

multiple pairs of weight 1002 and data 1004, for example, to calculate a dot-product result, may be

accumulated without overflowing the scalar result.

[00128] In some embodiments, computation unit 1000 generates an intermediate and/or final

computation result in accumulator 1024. The final computation result is then stored in shadow

register 1028 via multiplexer 1026. In some embodiments, multiplexer 1026 functions as an output

register and store the output of accumulator 1024. In various embodiments, the final computation

result is the result of a convolution operation. For example, the final result at ResultOut 1050 is the

result of convolution between a filter received by computation unit 1000 as input values using

weight 1002 and a two-dimensional region of sensor data received by computation unit 1000 as

input values using data 1004.

[00129] As an example, a convolution operation may be performed using computation unit

1000 on a 2x2 data input matrix [dO dl; d2 d3] corresponding to a region of sensor data and a filter

corresponding to a 2x2 matrix of weights [wO w l ; w2 w3]. The 2x2 data input matrix has a first

row [dO dl] and a second row [d2 d3]. The filter matrix has a first row [wO wl] and a second row

[w2 w3]. In various embodiments, computation unit 1000 receives the data matrix via data 1004 as

a one-dimensional input vector [dO dl d2 d3] one element per clock cycle and weight matrix via

weight 1002 as a one-dimensional input vector [wO w l w2 w3] one element per clock cycle. Using

computation unit 1000, the dot product of the two input vectors is performed to produce a scalar

result at ResultOut 1050. For example, multiplier 1030 is used to multiply each corresponding

element of the input weight and data vectors and the results are stored and added to previous results

in accumulator 1024. For example, the result of element d O multiplied by element w O (e.g., d O *

wO) is first stored in cleared accumulator 1024. Next, element d l is multiplied by element w l and

added using adder 1032 to the previous result stored in accumulator 1024 (e.g., d O * wO) to

compute the equivalent of d O * w O + dl * wl. Processing continues to the third pair of elements d2

and w2 to compute the equivalent of d O * w O + dl * w l + d2 * w2 at accumulator 1024. The last

pair of elements is multiplied and the final result of the dot product is now stored in accumulator

1024 (e.g., d O * w O + dl * w l + d2 * w2 + d3 * w3). The dot-product result is then copied to

shadow register 1028. Once stored in shadow register 1028, a new dot-product operation may be

initiated, for example, using a different region of sensor data. Based on ShiftEn signal 1016, the

dot-product result stored in shadow register 1028 is shifted out of shadow register 1028 to

ResultOut 1050. In various embodiments, the weight and data matrices may be different

dimensions than the example above. For example, larger dimensions may be used.

[00130] In some embodiments, a bias parameter is introduced and added to the dot-product

result using accumulator 1024. In some embodiments, the bias parameter is received as input at

either weight 1002 or data 1004 along with a multiplication identity element as the other input

value. The bias parameter is multiplied against the identity element to preserve the bias parameter

and the multiplication result (e.g., the bias parameter) is added to the dot-product result using adder

1032. The addition result, a dot-product result offset by a bias value, is stored in accumulator 1024

and later shifted out at ResultOut 1050 using shadow register 1028. In some embodiments, a bias

is introduced using a vector engine such as vector engine 111 of Figure 1.

[00131] Although the foregoing embodiments have been described in some detail for

purposes of clarity of understanding, the invention is not limited to the details provided. There are

many alternative ways of implementing the invention. The disclosed embodiments are illustrative

and not restrictive.

CLAIMS

1. A microprocessor system, comprising:

a computational array that includes a plurality of computation units; and

a vector computational unit in communication with the computational array.

2. The system of claim 1, wherein the vector computational unit includes a plurality of

processing elements, and the processing elements are configured to receive output data elements

from the computational array and process in parallel the received output data elements.

3. The system of claim 2, wherein the processing elements process in parallel the received

output data elements in response to a single processor instruction.

4. The system of claim 1, wherein the computational array includes a matrix processor.

5. The system of claim 1, wherein the computational array is configured to receive two vector

input operands.

6. The system of claim 1, wherein each computation unit of the plurality of computation units

includes an arithmetic logic unit, an accumulator, and a shadow register.

7. The system of claim 1, wherein each computation unit of the plurality of computation units

is configured to perform a multiply operation and an add operation.

8. The system of claim 1, wherein each computation unit of the plurality of computation units

is configured to perform a dot-product component operation.

9. The system of claim 1, wherein each computation unit of the plurality of computation units

is configured to compute a dot-product result component in parallel in response to a single

computational array instruction.

10. The system of claim 2, wherein each processing element of the plurality of processing

elements includes an arithmetic logic unit configured to perform arithmetic logic unit operations in

parallel with other processing elements.

11. The system of claim 2, wherein a notification signal identifies that output data elements

from the computational array are ready for the vector computational unit.

12. The system of claim 1, wherein the computational array is configured to operate as a first-

in-first-out queue.

13. The system of claim 2, wherein the output data elements from the computational array

correspond to dot-product results.

14. The system of claim 2, wherein the output data elements from the computational array

correspond to convolution results performed on image data.

15. The system of claim 3 wherein the single processor instruction is used to calculate a result

of a non- linear function.

16. The system of claim 15, wherein the non-linear function is a rectified linear unit function or

a sigmoid function.

17. The system of claim 1, further comprising a post-processing unit in communication with the

vector computational unit.

18. The system of claim 17, wherein the post-processing unit is configured to perform a pooling

function.

19. The system of claim 2, wherein the received output data elements from the computational

array are stored in an accumulator.

20. The system of claim 19, wherein each processing element of the plurality of processing

elements is configured to access a slice of the accumulator and a slice of one or more vector

registers.

21. The system of claim 2, wherein the vector computational unit further includes a plurality of

vector registers sized to fit the output data elements from the computational array.

22. A microprocessor system, comprising:

a computational array that includes a plurality of computation units, wherein each

computation unit of the plurality of computation units is configured to perform a dot-product

component operation in response to a single computational array instruction; and

a vector computational unit in communication with the computational array, wherein the

vector computational unit includes a plurality of processing elements and the processing elements

are configured to receive output data elements from the computational array and process in parallel

the received output data elements in response to a single vector computational unit instruction.

23. The system of claim 22, further comprising:

a control unit configured to provide the single computational array instruction to the

computational array and the single vector computational unit instruction to the vector

computational unit.

24. The system of claim 23, wherein the control unit synchronizes the output data elements

transferred from the computational array to the processing elements of the vector computational

unit.

25. The method comprising:

receiving a single processor instruction for a vector computational unit, wherein the vector

computational unit is in communication with a computational array and includes a plurality of

processing elements configured to receive output data elements from the computational array;

receiving the output data elements from the computational array, wherein the computational

array includes a plurality of computation units; and

processing in parallel the received output data elements in response to the single processor

instruction.

INTERNATIONAL SEARCH REPORT International application No.

PCT/US18/38618

A . CLASSIFICATION O F SUBJECT MATTER

IPC - G06F 17/1 6 , 15/80, 15/1 8 (201 8.01)
CPC -

G06F 15/8053, 17/16, 17/1 5 , 7/5443, 15/1 8, 15/8023; G06N 3/08, 3/0481

According to Internationa] Patent Classification (IPC) o r to both national classification and IPC

B . FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

See Search History document

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

See Search History document

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

See Search History document

C . DOCUMENTS CONSIDERED T O B E RELEVANT

Category* Citation of document, with indication, where appropriate, o f the relevant passages Relevant to claim No.

US 2013/0159665 A 1 (KASHYAP, A.) 20 June 2013; figures 2 , 5 ; paragraphs [0030], [0031], 1, 4-9,12
[0041], [0056].

10, 13, 19-24

US 2014/0046995 A 1 (THE MATHWORKS, INC.) 13 February 2014; figures 5 , 7 ; paragraphs 1-3, 17-18, 25
[0052]-[0054],[0058], [0059]; claim 39.

10-1 1, 13-16, 19-24

US 2016/0364334 A 1 (ADVANCED MICRO DEVICES, INC.) 15 December 2016; paragraphs 11
UU UJ, IUU5UJ.

US 2017/0103318 A 1 (GOOGLE INC.) 13 April 2017; paragraph [01 11]. 14

US 2017/0193360 A 1 (MICROSOFT TECHNOLOGY LICENSING, LLC) 06 July 2017; 15-16
paragraphs [0056], [0081].

I Further documents are listed in the continuation o f Box C . [[See patent family annex.

* Special categories of cited documents: " ' later document published after the international filing date or priority
"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand

to be of particular relevance the principle or theory underlying the invention

"E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive

"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of another citation or other
special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be

considered to involve an inventive step when the document is
"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination

means being obvious to a person skilled in the art

"P" document published prior to the international filing date but later than "&" document member of the same patent family
the priority date claimed

Date of the actual completion o f the international search Date of mailing of the international search report

11 August 2018 (1 1.08.2018) 0 S EP 2018

Name and mailing address of the ISA/ Authorized officer

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents Shane Thomas
P.O. Box 1450, Alexandria, Virginia 22313-1450

Facsimile No. 571-273-8300

Form PCT/ISA/210 (second sheet) (January 201 5)

	abstract
	description
	claims
	drawings
	wo-search-report

