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A microprocessor system comprises a computational array 
and a hardware arbiter . The computational array includes a 
plurality of computation units . Each of the plurality of 
computation units operates on a corresponding value 
addressed from memory . The hardware arbiter is configured 
to control issuing of at least one memory request for one or 
more of the corresponding values addressed from the 
memory for the computation units . The hardware arbiter is 
also configured to schedule a control signal to be issued 
based on the issuing of the memory requests . 
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COMPUTATIONAL ARRAY 
MICROPROCESSOR SYSTEM WITH 

VARIABLE LATENCY MEMORY ACCESS 

[ 0006 ] FIG . 3 is a flow diagram illustrating an embodi 
ment of a process for performing machine learning process 
ing . 

CROSS REFERENCE TO OTHER 
APPLICATIONS 

[ 0001 ] This application claims priority to U . S . Provisional 
Patent Application No . 62 / 635 , 399 entitled A COMPUTA 
TIONAL ARRAY MICROPROCESSOR SYSTEM WITH 
VARIABLE LATENCY MEMORY ACCESS filed Feb . 26 , 
2018 , and this application claims priority to U . S . Provisional 
Patent Application No . 62 / 625 , 251 entitled VECTOR COM 
PUTATIONAL UNIT filed Feb . 1 , 2018 , and this application 
claims priority to U . S . Provisional Patent Application No . 
62 / 536 , 399 entitled ACCELERATED MATHEMATICAL 
ENGINE filed Jul . 24 , 2017 , and this application is a 
continuation - in - part of co - pending U . S . patent application 
Ser . No . 15 / 710 , 433 entitled ACCELERATED MATH 
EMATICAL ENGINE filed Sep . 20 , 2017 , which claims 
priority to U . S . Provisional Patent Application No . 62 / 536 , 
399 entitled ACCELERATED MATHEMATICAL ENGINE 
filed Jul . 24 , 2017 , all of which are incorporated herein by 
reference for all purposes . 

[ 0007 ] FIG . 4 is a block diagram illustrating an embodi 
ment of a computation unit of a computational array . 
10008 ] FIG . 5 is a block diagram illustrating an embodi 
ment of a cache - enabled microprocessor system for per 
forming machine learning processing . 
[ 0009 ] FIG . 6 is a block diagram illustrating an embodi 
ment of a hardware data formatter , cache , and memory 
components of a microprocessor system . 
[ 0010 ] FIG . 7 is a flow diagram illustrating an embodi 
ment of a process for performing machine learning process 
ing . 
0011 ] FIG . 8 is a flow diagram illustrating an embodi 
ment of a process for retrieving input operands for a com 
putational array . 
[ 0012 ] FIG . 9 is a block diagram illustrating an embodi 
ment of a microprocessor system for synchronizing variable 
latency memory access . 
[ 0013 ] FIG . 10 is a flow diagram illustrating an embodi 
ment of a process for performing machine learning process 
ing . 

BACKGROUND OF THE INVENTION 

[ 00141 . FIG . 11 is a flow diagram illustrating an embodi 
ment of a process for synchronizing memory access with a 
control operation . 
[ 0015 ] FIG . 12 is a flow diagram illustrating an embodi 
ment of a process for synchronizing memory access with a 
control operation . 

[ 0002 ] Performing inference on a machine learning model 
typically requires retrieving data from memory and applying 
one or more computational array operations on the data . 
Applications of machine learning , such as those targeting 
self - driving and driver - assisted automobiles , often utilize 
computational array operations to calculate matrix and vec 
tor results . These operations require loading data , such 
captured sensor data , and performing image processing to 
identify key features , such as lane markers and other objects 
in a scene . Traditionally , these operations may be imple 
mented using a generic microprocessor system that loads the 
computation data from memory before performing a com 
putational array instruction . While the data is loading , the 
microprocessor system often sits idle . The software platform 
running these applications will initiate the computational 
array instruction once the data has completed loading . The 
length of stalls and the time required to synchronize the 
computational operation with the retrieved data can be 
particularly long for when accessing variable latency 
memory . Stalls and synchronization efforts by the software 
platform reduce the efficiency of the microprocessor system 
and result in higher power consumption and lower through 
put . Therefore , there exists a need for a microprocessor 
system with increased throughput that performs array com 
putational operations using variable latency memory access . 

DETAILED DESCRIPTION 
[ 0016 ] The invention can be implemented in numerous 
ways , including as a process ; an apparatus ; a system ; a 
composition of matter ; a computer program product embod 
ied on a computer readable storage medium ; and / or a 
processor , such as a processor configured to execute instruc 
tions stored on and / or provided by a memory coupled to the 
processor . In this specification , these implementations , or 
any other form that the invention may take , may be referred 
to as techniques . In general , the order of the steps of 
disclosed processes may be altered within the scope of the 
invention . Unless stated otherwise , a component such as a 
processor or a memory described as being configured to 
perform a task may be implemented as a general component 
that is temporarily configured to perform the task at a given 
time or a specific component that is manufactured to per 
form the task . As used herein , the term ' processor ' refers to 
one or more devices , circuits , and / or processing cores con 
figured to process data , such as computer program instruc 
tions . 
[ 0017 ] A detailed description of one or more embodiments 
of the invention is provided below along with accompanying 
figures that illustrate the principles of the invention . The 
invention is described in connection with such embodi 
ments , but the invention is not limited to any embodiment . 
The scope of the invention is limited only by the claims and 
the invention encompasses numerous alternatives , modifi 
cations and equivalents . Numerous specific details are set 
forth in the following description in order to provide a 
thorough understanding of the invention . These details are 
provided for the purpose of example and the invention may 
be practiced according to the claims without some or all of 
these specific details . For the purpose of clarity , technical 
material that is known in the technical fields related to the 

BRIEF DESCRIPTION OF THE DRAWINGS 

[ 0003 ] Various embodiments of the invention are dis 
closed in the following detailed description and the accom 
panying drawings . 
[ 0004 ] FIG . 1 is a block diagram illustrating an embodi 
ment of a microprocessor system for performing machine 
learning processing . 
[ 0005 ] FIG . 2 is a flow diagram illustrating an embodi 
ment of a process for performing machine learning process 
ing . 
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invention has not been described in detail so that the 
invention is not unnecessarily obscured . 
[ 0018 ] One technique for loading a large number of ele 
ments and synchronizing the loading of the elements with a 
control operation is to stall the microprocessor system 
pending the completion of each memory read . A software 
platform is configured to initiate the load of the data from 
memory by issuing a processor instruction and the processor 
stalls until the load is complete . While the memory read is 
pending , the software platform waits for the load to com 
plete . Upon completion of the memory read , a next proces 
sor instruction corresponding to a computational operation is 
processed and the data arguments are prepared using the 
result of the memory read . This computational operation 
instruction specifying a computational operation and oper 
ands is issued for processing by the computational array . An 
alternative technique requires stalling the processor and 
waiting for an interrupt to resume the execution of the 
processor . Both these techniques incur significant perfor 
mance penalties waiting for the memory read request to be 
granted access to memory and for the memory read to be 
performed once access has been granted . Moreover , the 
techniques increase power consumption by stalling the 
microprocessor system while each memory read completes . 
Since the memory reads incur an access time with a variable 
latency , the length of each stall is difficult to predict . A 
microprocessor system relying on these techniques is limited 
in both its throughput and power efficiency . 
[ 0019 ] To address these limitations , a microprocessor sys 
tem for performing high throughput array computational 
operations is disclosed . In some embodiments , a micropro 
cessor system includes a hardware arbiter to manage 
memory requests and is in communication with a control 
unit and a control queue to synchronize computational 
operations associated with the memory requests . The hard 
ware arbiter queues memory read requests to retrieve data 
from memory with variable access latency . Each request is 
queued until the request is granted access to memory and the 
request can be serviced . A control queue queues a control 
operation that corresponds to the memory request and 
describes a computational operation . The dequeueing of the 
control operation is synchronized with the availability of the 
data retrieved via the memory read request . The synchroni 
zation allows the data retrieved from memory and the 
control operation to be synchronized and provided to a 
computational array together to perform a computational 
operation . 
[ 0020 ] In various embodiments , a microprocessor system 
comprises at least a computational array and a hardware 
arbiter for performing arbitration of memory access requests 
and synchronizing the granted requests with a control unit . 
For example , a microprocessor system includes a hardware 
arbiter for controlling memory access requests to data that is 
operated on by a computational array such as a matrix 
processor . The computational array includes a plurality of 
computation units , wherein each of the plurality of compu 
tation units operates on a corresponding value addressed 
from memory . For example , a value address from memory 
may correspond to a portion of sensor data that is first loaded 
from memory before it can be fed to a corresponding 
computation unit of the computational array . In some 
embodiments , the hardware arbiter is configured to control 
the issuing of at least one memory request for one or more 
of the corresponding value addressed from the memory for 

the computation units . For example , the hardware arbiter 
receives memory read requests and queues them until each 
corresponding request is granted access by the hardware 
arbiter to read from memory . In some embodiments , the 
hardware arbiter is configured to schedule a control signal to 
be issued based on the issuing of the memory requests . For 
example , once the hardware arbiter grants a memory 
request , the hardware arbiter sends a ready control signal 
corresponding to the memory read request . In some embodi 
ments , the ready signal is sent once the read has completed . 
In various embodiments , the ready signal is received and 
results in the release of a queued control operation so that the 
operation can be made available at a computational array 
together with the data read from memory . In various 
embodiments , the data is first formatted by a hardware data 
formatter before presented to a computational array . 
[ 0021 ] In some embodiments , a microprocessor system 
includes a computational array ( e . g . , matrix processor ) in 
communication with a hardware data formatter for aligning 
the data to minimize data reads and the latency incurred by 
reading input data for processing . For example , a matrix 
processor allows a plurality of elements of a matrix and / or 
vector to be loaded and processed in parallel together . Thus , 
using data formatted by one or more hardware data format 
ters , a computational operation such as a convolution opera 
tion may be performed by the computational array . 
[ 0022 ] One technique includes loading a large number of 
consecutive elements ( e . g . , consecutive in memory ) of a 
matrix / vector together and performing operations on the 
consecutive elements in parallel using the matrix processor . 
By loading consecutive elements together , a single memory 
load and / or cache check for the entire group of elements can 
be performed allowing the entire group of elements to be 
loaded using minimal processing resources . However , 
requiring the input elements of each processing iteration of 
the matrix processor to be consecutive elements could 
potentially require the matrix processor to load a large 
number of matrix / vector elements that are to be not utilized . 
For example , performing a convolution operation using a 
stride greater than one requires access to matrix elements 
that are not consecutive . If parallel input elements to the 
matrix processor are required to be consecutive , each pro 
cessing iteration of the matrix processor is unable to fully 
utilize every individual input element for workloads only 
requiring non - consecutive elements . An alternative tech 
nique is to not require every individual input element of the 
matrix processor be consecutive ( e . g . , every individual input 
element can be independently specified without regard to 
whether it is consecutive in memory to a previous input 
element ) . This technique incurs significant performance 
costs since each referenced element incurs the cost of 
determining its memory address and performing a cache 
check for the individual element with the potential of an 
even more expensive load from memory in the case of a 
cache miss . 
[ 0023 ] . In an embodiment of a disclosed microprocessor 
system , the group of input elements of a matrix processor are 
divided into a plurality of subsets , wherein elements within 
each subset are required be consecutive but the different 
subsets are not required to be consecutive . This allows the 
benefit of reduce resources required to load consecutive 
elements within each subset while providing the flexibility 
of loading non - consecutive elements across the different 
subsets . For example , a hardware data formatter loads 
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multiple subsets of elements where the elements of each 
subset are located consecutively in memory . By loading the 
elements of each subset together , a memory address calcu 
lation and cache check is performed only with respect to the 
start and end elements of each subset . In the event of a cache 
miss , an entire subset of elements is loaded together from 
memory . Rather than incurring a memory lookup penalty on 
a per element basis as with the previous discussed technique , 
a cache check is minimized to two checks for each subset 
( the start and end elements ) and a single memory read for the 
entire subset in the event of a cache miss . Computational 
operations on non - consecutive elements , such as the per 
forming convolution using a stride greater than one , are 
more efficient since the memory locations of the subsets 
need not be consecutively located in memory . Using the 
disclosed system and techniques , computational operations 
may be performed on non - consecutive elements with 
increased throughput and a high clock frequency . 
[ 0024 ] In various embodiments , a computational array 
performs matrix operations involving input vectors and 
includes a plurality of computation units to receive M 
operands and N operands from the input vectors . Using a 
sequence of input vectors , a computational array may per 
form matrix operations such as a matrix multiplication . In 
some embodiments , the computation units are sub - circuits 
that include an arithmetic logic unit , an accumulator , a 
shadow register , and a shifter for performing operations such 
as generating dot - products and various processing for con 
volution . Unlike conventional graphical processing unit 
( GPU ) or central processing unit ( CPU ) processing cores , 
where each core is configured to receive its own unique 
processing instruction , the computation units of the compu 
tational array each perform the same computation in parallel 
in response to an individual instruction received by the 
computational array . 
[ 0025 ] In various embodiments , the data input to the 
computational array is prepared using a hardware data 
formatter . For example , a hardware data formatter is utilized 
to load and align data elements using subsets of elements 
where the elements of each subset are located consecutively 
in memory and the subsets need not be located consecutively 
in memory . In various embodiments , the various subsets 
may each have a memory location independent from other 
subsets . For example , the different subsets may be located 
non - consecutively in memory from one another . By restrict 
ing the data elements within a subset to consecutive data , 
multiple consecutive data elements are processed together , 
which minimizes the calculations and delay incurred when 
preparing the data for a computational array . For example , a 
subset of data elements may be cached as a consecutive 
sequence of data elements by performing a cache check on 
the start and end element and , in the event of a cache miss 
on either element , a single data read to load the entire subset 
from memory into a memory cache . Once all the data 
elements are available , the data may be provided together to 
the computational array as a group of values to be processed 
in parallel . 
[ 0026 ] In some embodiments , a microprocessor system 
comprises a computational array and a hardware data for 
matter . For example , a microprocessor system includes a 
matrix processor capable of performing matrix and vector 
operations . In various embodiments , the computational 
array includes a plurality of computation units . For example , 
the computation units may be sub - circuits of a matrix 

processor that include the functionality for performing one 
or more multiply , add , accumulate , and shift operations . As 
another example , computation units may be sub - circuits that 
include the functionality for performing a dot - product opera 
tion . In various embodiments , the computational array 
includes a sufficient number of computation units for per 
forming multiple operations on the data inputs in parallel . 
For example , a computational array configured to receive M 
operands and N operands may include at least MxN com 
putation units . In various embodiments , each of the plurality 
of computation units operates on a corresponding value 
formatted by a hardware data formatter and the values 
operated by the plurality of computation units are synchro 
nously provided together to the computational array as a 
group of values to be processed in parallel . For example , 
values corresponding to elements of a matrix are processed 
by one or more hardware data formatters and provided to the 
computational array together as a group of values to be 
processing in parallel . 
[ 0027 ] In various embodiments , a hardware data formatter 
is configured to gather the group of values to be processed 
in parallel by the computational array . For example , a 
hardware data formatter retrieves the values from memory , 
such as static random access memory ( SRAM ) , via a cache . 
In some embodiments , in the event of a cache miss , the 
hardware data formatter loads the values into the cache from 
memory and subsequently retrieves the values from the 
cache . In various embodiments , the values provided to the 
computational array correspond to computational operands . 
For example , a hardware formatter may process M operands 
as an input vector to a computational array . In various 
embodiments , a second hardware formatter may process N 
operands as a second input vector to the computational array . 
In some embodiments , each hardware data formatter pro 
cesses a group of values synchronously provided together to 
the computational array , where each group of values 
includes a first subset of values located consecutively in 
memory and a second subset of values located consecutively 
in memory , yet the first subset of values are not located 
consecutively in the memory from the second subset of 
values . For example , a hardware data formatter loads a first 
subset of values stored consecutively in memory and a 
second subset of values also stored consecutively in memory 
but with a gap in memory between the two subsets of values . 
Each subset of values is loaded as consecutive values into 
the hardware data formatter . To prepare an entire vector of 
inputs for a computational array , the hardware data formatter 
performs loads based on the number of subsets instead of 
based on the total number of elements needed for an input 
operand to a computational array . 
[ 0028 ] FIG . 1 is a block diagram illustrating an embodi 
ment of a microprocessor system for performing machine 
learning processing . In the example shown , microprocessor 
system 100 includes control unit 101 , memory 102 , cache 
103 , control queue 121 , arbiter 123 , data formatter 104 , 
weight formatter 106 , matrix processor 107 , vector engine 
111 , and post - processing unit 115 . Cache 103 is a memory 
cache for memory 102 to reduce latency when reading data . 
Memory 102 and cache 103 store data that is fed to hardware 
data formatters data formatter 104 and weight formatter 106 . 
Control unit 101 feeds control operations including opera 
tions for a computational array to control queue 121 where 
the control operations are queued . Arbiter 123 controls 
access to memory 102 and determines which memory read 
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requests for memory 102 are granted . Arbiter 123 signals 
control queue 121 when a memory request for a correspond 
ing queued control operation is granted and / or performed . 
Control queue 121 receives a signal , such as a ready signal , 
from arbiter 123 and dequeues the control operation asso 
ciated with the memory read that was granted access to 
memory and / or performed . Control queue 121 dequeues the 
control operation and provides the operation to matrix 
processor 107 in sync with the operands provided by data 
formatter 104 and weight formatter 106 . 
[ 0029 ] In the example shown , data formatter 104 and 
weight formatter 106 are hardware data formatters for 
preparing data for matrix processor 107 . In various embodi 
ments , the data values received at data formatter 104 and / or 
the weight values received data weight formatter 106 are 
provided by memory 102 and / or cache 103 . In various 
embodiments , the values are requested by the data formatter 
104 and / or weight formatter 106 . In some embodiments , the 
values are requested by control unit 101 and provided to data 
formatter 104 and / or weight formatter 106 . In some embodi 
ments , data formatter 104 and weight formatter 106 include 
a logic circuit for preparing data for matrix processor 107 
and / or a memory cache or buffer for storing and processing 
input data . For example , data formatter 104 may prepare N 
operands from a two - dimensional array retrieved from 
memory 102 ( potentially via cache 103 ) that correspond to 
image data . Weight formatter 106 may prepare M operands 
retrieved from memory 102 ( potentially via cache 103 ) that 
correspond to a vector of weight values . Data formatter 104 
and weight formatter 106 prepare the N and M operands to 
be processed by matrix processor 107 . In some embodi 
ments , microprocessor system 100 , including at least hard 
ware data formatters data formatter 104 and weight format 
ter 106 , matrix processor 107 , vector engine 111 , and 
post - processing unit 115 , perform the processes described 
below with respect to FIGS . 2 , 3 , 7 , 8 , and 10 - 12 . In various 
embodiments , at least control unit 101 , hardware arbiter 
123 , and control queue 121 are used to perform the pro 
cesses described below with respect to FIGS . 10 - 12 . 
[ 0030 ] In some embodiments , matrix processor 107 is a 
computational array that includes a plurality of computation 
units . For example , a matrix processor receiving M operands 
and N operands from weight formatter 106 and data for 
matter 104 , respectively , includes MxN computation units . 
In the figure shown , the small squares inside matrix proces 
sor 107 depict that matrix processor 107 includes a logical 
two - dimensional array of computation units . Computation 
unit 109 is one of a plurality of computation units of matrix 
processor 107 . In some embodiments , each computation unit 
is configured to receive one operand from data formatter 104 
and one operand from weight formatter 106 . In some 
embodiments , the computation units are configured accord 
ing to a logical two - dimensional array but the matrix pro 
cessor is not necessarily fabricated with computation units 
laid out as a physical two - dimensional array . For example , 
the i - th operand of data formatter 104 and the j - th operand 
of weight formatter 106 are configured to be processed by 
the i - thxj - th computation unit of matrix processor 107 . 
[ 0031 ] In various embodiments , the data width of compo 
nents data formatter 104 , weight formatter 106 , matrix 
processor 107 , vector engine 111 , and post - processing unit 
115 are wide data widths and include the ability to transfer 
more than one operand in parallel . In some embodiments , 
data formatter 104 and weight formatter 106 are each 

96 - bytes wide . In some embodiments , data formatter 104 is 
192 - bytes wide and weight formatter 106 is 96 - bytes wide . 
In various embodiments , the width of data formatter 104 and 
weight formatter 106 is dynamically configurable . For 
example , data formatter 104 may be dynamically configured 
to 96 or 192 bytes and weight formatter 106 may be 
dynamically configured to 96 or 48 bytes . In some embodi 
ments , the dynamic configuration is controlled by control 
unit 101 . In various embodiments , a data width of 96 bytes 
allows 96 operands to be processed in parallel . For example , 
in an embodiment with data formatter 104 configured to be 
96 - bytes wide , data formatter 104 can transfer 96 operands 
to matrix processor 107 in parallel . 
[ 0032 ] In various embodiments , memory 102 and / or cache 
103 provide input data to hardware data formatters data 
formatter 104 and weight formatter 106 based on memory 
addresses calculated by the hardware data formatters . In 
some embodiments , data formatter 104 and / or weight for 
matter 106 retrieves , via memory 102 and / or cache 103 , a 
stream of data corresponding to one or more subsets of 
values stored consecutively in memory . Data formatter 104 
and / or weight formatter 106 may retrieve one or more 
subsets of values stored consecutively in memory and pre 
pare the data as input values for matrix processor 107 . In 
various embodiments , the one or more subsets of values are 
not themselves stored consecutively in memory with other 
subsets of values . In some embodiments , memory 102 is a 
memory module that contains a single read port . In some 
embodiments , memory 102 is static random access memory 
( SRAM ) . In some embodiments , the memory contains a 
limited number of read ports and the number of read ports 
is fewer than the data width of components data formatter 
104 , weight formatter 106 , matrix processor 107 , vector 
engine 111 , and / or post - processing unit 115 . In various 
embodiments , reads to memory 102 are managed by arbiter 
123 . Arbiter 123 queues the read requests and determines 
when each read request may be granted access to memory 
102 . In various embodiments , the request are queued in a 
first - in - first - out manner by arbiter 123 . In some embodi 
ments , the requests are queued by arbiter 123 by associating 
a priority with each request . In various embodiments , once 
a read request is granted access to memory and / or the read 
is performed , arbiter 123 signals control queue 121 that the 
read is or will be ready in a fixed number of clock cycles . In 
some embodiments , arbiter 123 signals control queue 121 
that the read has been initiated . In some embodiments , 
arbiter 123 signals control queue 121 that the read has 
completed . In various embodiments , the read allowed by 
arbiter 123 results in data read and transferred to data 
formatter 104 and / or weight formatter 106 . In some embodi 
ments , a hardware data formatter , such as data formatter 104 
and weight formatter 106 , which will perform a cache check 
on cache 103 to determine whether each subset of values is 
in cache 103 prior to issuing a read request to memory 102 . 
In various embodiments , the read request is issued to arbiter 
123 . In the event the subset of values is cached , a hardware 
data formatter ( e . g . , data formatter 104 or weight formatter 
106 ) will retrieve the data from cache 103 . In various 
embodiments , in the event of a cache miss , the hardware 
data formatter ( e . g . , data formatter 104 or weight formatter 
106 ) will retrieve the entire subset of values from memory 
102 and populate cache 103 with the retrieved values . 
[ 0033 ] In various embodiments , control queue 121 queues 
control operations to matrix processor 107 in order to 
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synchronize the arrival of a control operation at matrix 
processor 107 with the arrival of the corresponding operands 
from data formatter 104 and / or weight formatter 106 . For 
example , control queue 121 includes a first - in - first - out 
queue for queuing computational operations , such as matrix 
operations and / or convolution operations , for a computa 
tional array such as a matrix processor . Control queue 121 
receives a signal from arbiter 123 , such as a ready signal , 
when the corresponding operands for a queued control 
operation are ready . In some embodiments , the ready state is 
based on the operands for matrix processor 107 being 
available in a fixed number of clock cycles . In some embodi 
ments , the ready signal corresponds to the memory access 
granted for reading the operands from memory 102 . In some 
embodiments , the ready signal corresponds to the memory 
read completing for the operands corresponding to queued 
control operation . Although not depicted in FIG . 1 , in some 
embodiments , control queue 121 is part of control unit 101 . 
[ 0034 ] In various embodiments , matrix processor 107 is 
configured to receive N bytes from data formatter 104 and 
M bytes from weight formatter 106 and includes at least 
MxN computation units . For example , matrix processor 107 
may be configured to receive 96 bytes from data formatter 
104 and 96 bytes from weight formatter 106 and includes at 
least 96x96 computation units . As another example , matrix 
processor 107 may be configured to receive 192 bytes from 
data formatter 104 and 48 bytes from weight formatter 106 
and includes at least 192x48 computation units . In various 
embodiments , the dimensions of matrix processor 107 may 
be dynamically configured . For example , the default dimen 
sions of matrix processor 107 may be configured to receive 
96 bytes from data formatter 104 and 96 bytes from weight 
formatter 106 but the input dimensions may be dynamically 
configured to 192 bytes and 48 bytes , respectively . In 
various embodiments , the output size of each computation 
unit is equal to or larger than the input size . For example , in 
some embodiments , the input to each computation unit is 
two 1 - byte operands , one corresponding to an operand from 
data formatter 104 and one from weight formatter 106 , and 
the output of processing the two operands is a 4 - byte result . 
As another example , matrix processor 107 may be config 
ured to receive 96 bytes from data formatter 104 and 96 
bytes from weight formatter 106 and output 96 4 - byte 
results . In some embodiments , the output of matrix proces 
sor 107 is a vector . For example , a matrix processor con 
figured to receive two 96 - wide input vectors , where each 
element ( or operand ) of the input vector is one byte in size , 
can output a 96 - wide vector result where each element of the 
vector result is 4 - bytes in size . 
[ 0035 ] In various embodiments , each computation unit of 
matrix processor 107 is a sub - circuit that includes an arith 
metic logic unit , an accumulator , and a shadow register . In 
the example shown , the computation units of matrix pro 
cessor 107 can perform an arithmetic operation on the M 
operands and N operands from weight formatter 106 and 
data formatter 104 , respectively . In various embodiments , 
each computation unit is configured to perform one or more 
multiply , add , accumulate , and / or shift operations . In some 
embodiments , each computation unit is configured to per 
form a dot - product operation . For example , in some embodi 
ments , a computation unit may perform multiple dot - product 
component operations to calculate a dot - product result . For 
example , the array of computation units of matrix processor 
107 may be utilized to perform convolution steps required 

for performing inference using a machine learning model . A 
two - dimensional data set , such as an image , may be format 
ted and fed into matrix processor 107 using data formatter 
104 , one vector at a time . In parallel , a filter of weights may 
be applied to the two - dimensional data set by formatting the 
weights and feeding them as a vector into matrix processor 
107 using weight formatter 106 . Corresponding computation 
units of matrix processor 107 perform a matrix processor 
instruction on the corresponding operands of the weight and 
data inputs in parallel . 
[ 0036 ] In some embodiments , vector engine 111 is a 
vector computational unit that is communicatively coupled 
to matrix processor 107 . Vector engine 111 includes a 
plurality of processing elements including processing ele 
ment 113 . In the figure shown , the small squares inside 
vector engine 111 depict that vector engine 111 includes a 
plurality of processing elements arranged as a vector . In 
some embodiments , the processing elements are arranged in 
a vector in the same direction as data formatter 104 . In some 
embodiments , the processing elements are arranged in a 
vector in the same direction as weight formatter 106 . In 
various embodiments , the data size of the processing ele 
ments of vector engine 111 is the same size or larger than the 
data size of the computation units of matrix processor 107 . 
For example , in some embodiments , computation unit 109 
receives two operands each 1 byte in size and outputs a 
result 4 bytes in size . Processing element 113 receives the 
4 - byte result from computation unit 109 as an input 4 bytes 
in size . In various embodiments , the output of vector engine 
111 is the same size as the input to vector engine 111 . In 
some embodiments , the output of vector engine 111 is 
smaller in size compared to the input to vector engine 111 . 
For example , vector engine 111 may receive up to 96 
elements each 4 bytes in size and output 96 elements each 
1 byte in size . As described above , in some embodiments , 
the communication channel from data formatter 104 and 
weight formatter 106 to matrix processor 107 is 96 - elements 
wide with each element 1 byte in size and matches the output 
size of vector engine 111 ( 96 - elements wide with each 
element 1 byte in size ) . 
[ 0037 ] In some embodiments , the processing elements of 
vector engine 111 , including processing element 113 , each 
include an arithmetic logic unit ( ALU ) ( not shown ) . For 
example , in some embodiments , the ALU of each processing 
element is capable of performing arithmetic operations . In 
some embodiments , each ALU of the processing elements is 
capable of performing in parallel a rectified linear unit 
( ReLU ) function and / or scaling functions . In some embodi 
ments , each ALU is capable of performing a non - linear 
function including non - linear activation functions . In vari 
ous embodiments , each processing element of vector engine 
111 includes one or more flip - flops for receiving input 
operands . In some embodiments , each processing element 
has access to a slice of a vector engine accumulator and / or 
vector registers of vector engine 111 . For example , a vector 
engine capable of receiving 96 - elements includes a 96 - ele 
ment wide accumulator and one or more 96 - element vector 
registers . Each processing element has access to a one 
element slice of the accumulator and / or vector registers . In 
some embodiments , each element is 4 - bytes in size . In 
various embodiments , the accumulator and / or vector regis 
ters are sized to fit at least the size of an input data vector . 
In some embodiments , vector engine 111 includes additional 
vector registers sized to fit the output of vector engine 111 . 
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[ 0038 ] In some embodiments , the processing elements of 
vector engine 111 are configured to receive data from matrix 
processor 107 and each of the processing elements can 
process the received portion of data in parallel . As one 
example of a processing element , processing element 113 of 
vector engine 111 receives data from computation unit 109 
of matrix processor 107 . In various embodiments , vector 
engine 111 receives a single vector processor instruction and 
in turn each of the processing elements performs the pro 
cessor instruction in parallel with the other processing 
elements . In some embodiments , the processor instruction 
includes one or more component instructions , such as a load , 
a store , and / or an arithmetic logic unit operation . In various 
embodiments , a no - op operation may be used to replace a 
component instruction . 
[ 0039 ] In the example shown , the dotted arrows between 
data formatter 104 and matrix processor 107 , weight for 
matter 106 and matrix processor 107 , matrix processor 107 
and vector engine 111 , and vector engine 111 and post 
processing unit 115 depict couplings between the respective 
pairs of components that are capable of sending multiple 
data elements such as a vector of data elements . As an 
example , the communication channel between matrix pro 
cessor 107 and vector engine 111 may be 96x32 bits wide 
and support transferring 96 elements in parallel where each 
element is 32 bits in size . As another example , the commu 
nication channel between vector engine 111 and post - pro 
cessing unit 115 may be 96x1 byte wide and support 
transferring 96 elements in parallel where each element is 1 
byte in size . In various embodiments , input to data formatter 
104 and weight formatter 106 are retrieved from memory 
102 and / or cache 103 . In some embodiments , vector engine 
111 is additionally coupled to a memory module ( not shown 
in FIG . 1 ) and may receive input data from the memory 
module in addition or alternatively to input from matrix 
processor 107 . In the various embodiments , a memory 
module is typically a static random access memory 
( SRAM ) . 
[ 0040 ] In some embodiments , one or more computation 
units of matrix processor 107 may be grouped together into 
a lane such that matrix processor 107 has multiple lanes . In 
various embodiments , the lanes of matrix processor 107 may 
be aligned with either data formatter 104 or weight formatter 
106 . For example , a lane aligned with weight formatter 106 
includes a set of computation units that are configured to 
receive as input every operand of weight formatter 106 . 
Similarly , a lane aligned with data formatter 104 includes a 
set of computation units that are configured to receive as 
input every operand of data formatter 104 . In the example 
shown in FIG . 1 , the lanes are aligned along weight format 
ter 106 in a vertical column and each lane feeds to a 
corresponding lane of vector engine 111 . In some embodi 
ments , each lane is a vertical column of sub - circuits that 
include multiply , add and / or accumulate , and shift function 
ality . In some embodiments , matrix processor 107 includes 
a matrix of tiles and each tile is a matrix of computation 
units . For example , a 96x96 matrix processor may include a 
matrix of 6x6 tiles , where each tile includes 16x16 compu 
tation units . In some embodiments , a vertical lane is a single 
column of tiles . In some embodiments , a horizontal lane is 
a single row of tiles . In various embodiments , the dimen 
sions of the lane may be configured dynamically and may be 
utilized for performing alignment operations on the input to 
matrix processor 107 , vector engine 111 , and / or post - pro 

cessing unit 115 . In some embodiments , the dynamic con 
figuration is performed by or using control unit 101 and / or 
with using processor instructions and / or control signals 
controlled by control unit 101 . 
[ 0041 ] In some embodiments , control unit 101 synchro 
nizes the processing performed by data formatter 104 , 
weight formatter 106 , arbiter 123 , matrix processor 107 , 
vector engine 111 , and post - processing unit 115 . For 
example , control unit 101 may send processor specific 
control signals and / or instructions to each of data formatter 
104 , weight formatter 106 , matrix processor 107 , vector 
engine 111 , and post - processing unit 115 . In some embodi 
ments , a control signal is utilized instead of a processor 
instruction . Control unit 101 may send matrix processor 
instructions to matrix processor 107 . A matrix processor 
instruction may be a computational array instruction that 
instructs a computational array to perform an arithmetic 
operation , such as a dot - product or dot - product component , 
using specified operands retrieved from memory 102 and / or 
cache 103 that are formatted by data formatter 104 and / or 
weight formatter 106 , respectively . Control unit 101 may 
send vector processor instructions to vector engine 111 . For 
example , a vector processor instruction may include a single 
processor instruction with a plurality of component instruc 
tions to be executed together by the vector computational 
unit . Control unit 101 may send post - processing instructions 
to post - processing unit 115 . In various embodiments , control 
unit 101 synchronizes data that is fed to matrix processor 
107 from data formatter 104 and weight formatter 106 , to 
vector engine 111 from matrix processor 107 , and to post 
processing unit 115 from vector engine 111 . In some 
embodiments , control unit 101 synchronizes the data 
between different components of microprocessor system 
100 including between data formatter 104 , weight formatter 
106 , matrix processor 107 , vector engine 111 , and / or post 
processing unit 115 by utilizing processor specific memory , 
queue , and / or dequeue operations and / or control signals . In 
some embodiments , data and instruction synchronization is 
performed by control unit 101 . In some embodiments , data 
and instruction synchronization is performed by control unit 
101 that includes one or more sequencers to synchronize 
processing between data formatter 104 , weight formatter 
106 , matrix processor 107 , vector engine 111 , and / or post 
processing unit 115 . In some embodiments , data and instruc 
tion synchronization is performed by using arbiter 123 to 
initiate the dequeueing of a control operation queued at 
control queue 121 to synchronize the arrival of operands at 
matrix processor 107 via data formatter 103 and weight 
formatter 106 with the arrival of the corresponding control 
operation . 
100421 In some embodiments , data formatter 104 , weight 
formatter 106 , matrix processor 107 , and vector engine 111 
are utilized for processing convolution layers . For example , 
matrix processor 107 may be used to perform calculations 
associated with one or more convolution layers of a convo 
lution neural network . Data formatter 104 and weight for 
matter 106 may be utilized to prepare matrix and / or vector 
data in a format for processing by matrix processor 107 . 
Memory 102 may store image data such as one or more 
image channels captured by sensors ( not shown ) , where 
sensors include , as an example , cameras mounted to a 
vehicle . Memory 102 may store weights determined by 
training a machine learning model for autonomous driving . 
In some embodiments , vector engine 111 is utilized for 
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performing non - linear functions such as an activation func 
tion on the output of matrix processor 107 . For example , 
matrix processor 107 may be used to calculate a dot - product 
and vector engine 111 may be used to perform an activation 
function such as a rectified linear unit ( ReLU ) or sigmoid 
function . In some embodiments , post - processing unit 115 is 
utilized for performing pooling operations . In some embodi 
ments , post - processing unit 115 is utilized for formatting 
and storing the processed data to memory and may be 
utilized for synchronizing memory writing latency . 
[ 0043 ] FIG . 2 is a flow diagram illustrating an embodi 
ment of a process for performing machine learning process 
ing . In some embodiments , the process of FIG . 2 is utilized 
to implement a convolutional neural network using sensor 
input data such as images and learned weights . In various 
embodiments , the process of FIG . 2 may be repeated for 
multiple convolution layers by using the output of the 
process of FIG . 2 as the input for the next convolution layer . 
In some embodiments , the processing is performed in the 
context of self - driving or driver - assisted vehicles to identify 
objects in a scene such as street signs , vehicles , pedestrians , 
and lane markers , among other objects . Other sensor data , 
including non - image sensor data , such as ultrasonic , radar , 
and LiDAR , may also be utilized as input data . In various 
embodiments , the process of FIG . 2 utilizes a microproces 
sor system such as is microprocessor system 100 of FIG . 1 . 
[ 0044 ] At 201 , input channels are received as input data to 
the microprocessor system . For example , vision data is 
captured using sensors and may include one or more chan 
nels corresponding to different color channels for the colors 
red , green , and blue . In various embodiments , multiple 
channels may be utilized as the different channels may 
contain different forms of information . As another example , 
non - sensor data may be utilized as input data . In various 
embodiments , the input channels may be loaded from 
memory via a cache using subsets of consecutively stored 
data in memory . In some embodiments , the input channels 
may be retrieved and / or formatted for processing using a 
hardware data formatter such as data formatter 104 of FIG . 
1 . 
[ 0045 ] At 203 , one or more filters are received for pro 
cessing the input channels . For example , a filter in the form 
of a matrix contains learned weights and is used to identify 
activations in the channels . In some embodiments , the filter 
is a square matrix kernel smaller than the input channel . In 
various embodiments , filters may be utilized to identify 
particular shapes , edges , lines , and other features and / or 
activations in the input data . In some embodiments , the 
filters and associated weights that make up the filter are 
created by training a machine learning model using a 
training corpus of data similar to the input data . In various 
embodiments , the received filters may be streamed from 
memory . In some embodiments , the filters may be retrieved 
and / or formatted for processing using a hardware data 
formatter such as weight formatter 106 of FIG . 1 . 
[ 00461 At 205 , one or more feature layers are determined 
using the received input channels and filters . In various 
embodiments , the feature layers are determined by perform 
ing one or more convolution operations using a computa 
tional array such as matrix processor 107 of FIG . 1 . In some 
embodiments , the one or more output feature layers are 
determined by repeatedly performing a dot - product between 
different small regions of an input channel and the weights 
of the filter . In various embodiments , each filter is used to 

create a single feature layer by performing a two - dimen 
sional convolution using the filter . In some embodiments , 
the input data is padded to adjust for the size of the output 
feature layer . In various embodiments , a stride parameter is 
utilized and may impact the size of the output feature layer . 
In various embodiments , a bias parameter may be utilized . 
For example , a bias term may be added to the resulting 
values of convolution for each element of a feature layer . 
10047 ] . At 207 , an activation function is performed on one 
or more feature layers . For example , an element - wise acti 
vation function , such as a rectified linear unit ( ReLU ) 
function , is performed using a vector processor such as 
vector engine 111 of FIG . 1 to create an activation layer . In 
various embodiments , different activation functions , such as 
a non - linear activation function , including ReLU and sig 
moid , may be utilized to create an activation layer for each 
feature layer . 
[ 0048 ] At 209 , pooling is performed on the activation 
layers created at 207 . For example , a pooling layer is 
generated by a post - processing unit such as post - processing 
unit 115 of FIG . 1 using the activation layer generated at 
207 . In some embodiments , the pooling layer is generated to 
down sample the activation layer . In various embodiments , 
different filter sizes may be utilized to create a pooling layer 
based on the desired output size . In various embodiments , 
different pooling techniques , such as maxpooling , are uti 
lized . In various embodiments , pooling parameters include 
kernel size , stride , and / or spatial extent , among others . In 
some embodiments , the pooling layer is an optional layer 
and may be implemented when appropriate . 
[ 0049 ] In various embodiments , the process of FIG . 2 is 
utilized for each layer of a convolution neural network 
( CNN ) . Multiple passes of the process of FIG . 2 may be 
utilized to implement a multi - layer CNN . For example , the 
output of 209 may be utilized as input channels at 201 to 
calculate output layers of an intermediate layer . In some 
embodiments , a CNN is connected to one or more additional 
non - CNN layers for classification , object detection , object 
segmentation , and / or other appropriate goals . In some 
embodiments , the additional non - CNN layers are imple 
mented using a microprocessor system such as is micropro 
cessor system 100 of FIG . 1 . 
10050 ] FIG . 3 is a flow diagram illustrating an embodi 
ment of a process for performing machine learning process 
ing . In some embodiments , the process of FIG . 3 is utilized 
to perform inference on sensor data by performing compu 
tational operations , such as convolution operations , and 
element - wise activation functions . In some embodiments , 
the process of FIG . 3 is performed using a microprocessor 
system such as is microprocessor system 100 of FIG . 1 . In 
various embodiments , steps 301 and 303 are performed at 
201 of FIG . 2 using at least data formatter 104 of FIG . 1 , 
steps 305 and 307 are performed at 203 of FIG . 2 using at 
least weight formatter 106 of FIG . 1 , step 309 is performed 
at 205 of FIG . 2 using at least matrix processor 107 of FIG . 
1 , step 311 is performed at 207 of FIG . 2 using at least vector 
engine 111 of FIG . 1 , and step 313 is performed at 209 of 
FIG . 2 using at least post - processing unit 115 of FIG . 1 . 
[ 0051 ] At 301 , data input is received . For example , data 
input corresponding to sensor data is received by a hardware 
data formatter for formatting . In some embodiments , data 
input is retrieved from memory 102 of FIG . 1 and is received 
by data formatter 104 of FIG . 1 . In various embodiments , a 
hardware data formatter requests the data input from 
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memory as read requests based on subsets of values stored 
consecutively in memory . For example , a hardware data 
formatter may first check a cache of the memory for the 
requested data values and in the event of a cache miss , the 
read request will retrieve the data values from memory . In 
various embodiments , checking for a cache hit or miss 
requires calculating the start address and end address of the 
subset of requested data values . In some embodiments , a 
data request populates the cache with the requested values 
along with additional data to fill a cache line . In some 
embodiments , the data is streamed in from memory and may 
bypass the cache . 
[ 0052 ] At 303 , data input is formatted using a hardware 
data formatter . For example , a hardware data formatter such 
as data formatter 104 of FIG . 1 formats the received data 
input for processing by a computational array such as matrix 
processor 107 of FIG . 1 . The hardware data formatter may 
format the received data input into an input vector of 
operands for a computational array . In some embodiments , 
the hardware data formatter further performed the requesting 
of data received at 301 . In some embodiments , the hardware 
data formatter will format at least one of the operands of a 
convolution operation . For example , each two - dimensional 
region corresponding to an input channel of vision data for 
a convolution operation involving a filter will be formatted 
by the hardware data formatter into a vector operand for the 
computational array . The vectors corresponding to the 
regions are grouped together by their n - th elements and fed 
to the computation array at a rate of at most one element 
from each vector per clock cycle . In some embodiments , the 
hardware data formatter will select the appropriate elements 
for performing convolution of a filter with the data input by 
formatting each region of the data input into a vector and 
feeding each element of the appropriate vector to a corre 
sponding computation unit of a computational array . In some 
embodiments , a bias parameter is introduced using the 
hardware data formatter . 
[ 0053 ] At 305 , weight input is received . For example , 
weight input corresponding to machine learning weights of 
a filter are received by a hardware data formatter for 
formatting . In some embodiments , weight input is retrieved 
from memory 102 of FIG . 1 and is received by weight 
formatter 106 of FIG . 1 . In various embodiments , a hard 
ware data formatter requests the weight input from memory 
as read requests based on subsets of values stored consecu 
tively in memory . For example , a hardware data formatter 
may first check a cache of the memory for the requested 
weight values and in the event of a cache miss , the read 
request will retrieve the weight values from memory . In 
various embodiments , checking for a cache hit or miss 
requires calculating the start address and end address of the 
subset of requested weight values . In some embodiments , a 
weight data request populates the cache with the requested 
weight values . In some embodiments , the data for weights is 
streamed in from memory and may bypass the cache . In 
some embodiments , the weight input includes a bias param 
eter . 
[ 0054 ] At 307 , weight input is formatted using a hardware 
data formatter . For example , a hardware data formatter such 
as weight formatter 106 of FIG . 1 formats the received 
weight input for processing by a computational array such as 
matrix processor 107 of FIG . 1 . The hardware data formatter 
may format the received weight input into an input vector of 
operands for a computational array . In some embodiments , 

the hardware data formatter further performed the requesting 
of data received at 305 . In some embodiments , the hardware 
data formatter will format at least one of the operands of a 
convolution operation . For example , a filter for a convolu 
tion operation will be formatted by the hardware data 
formatter into a vector operand for the computational array . 
In some embodiments , the hardware data formatter will 
select the appropriate elements for performing convolution 
of a filter with the data input by formatting the filter into a 
vector and feeding each element of the vector to a corre 
sponding computation unit of a computational array . In some 
embodiments , a bias parameter is introduced using the 
hardware data formatter . 
[ 0055 ] At 309 , matrix processing is performed . For 
example , the operands formatted at 303 and 307 are received 
by each of the computation units of a computational array 
for processing . In some embodiments , the matrix processing 
is performed using a matrix processor such as matrix pro 
cessor 107 of FIG . 1 . In some embodiments , a dot - product 
is performed at each appropriate computation unit of the 
computational array using respective vectors received by 
hardware data formatters such as data formatter 104 and 
weight formatter 106 of FIG . 1 . In some embodiments , only 
a subset of the matrix processor ' s computation units is 
utilized . For example , a computational array with 96x96 
computation units may utilize only 64x64 computation units 
in the event the data input is 64 vectors and the weight input 
is 64 vectors . In various embodiments , the number of 
computation units utilized is based on the size on the data 
input and / or weight input . In some embodiments , the com 
putation units each perform one or more of multiply , add , 
accumulate , and / or shift operations . In some embodiments , 
the computation units each perform one or more of multiply , 
add , accumulate , and / or shift operations each clock cycle . In 
some embodiments , a bias parameter is received and added 
to the calculated dot - product as part of the matrix processing 
performed 
[ 0056 ] At 311 , vector processing is performed . For 
example , an element - wise activation function may be per 
formed on the result of the matrix processing performed at 
309 . In some embodiments , an activation function is a 
non - linear activation function such as a rectified linear unit 
( ReLU ) , sigmoid , or other appropriate function . In some 
embodiments , the vector processor is utilized to implement 
scaling , normalization , or other appropriate techniques . For 
example , a bias parameter may be introduced to the result of 
a dot - product using the vector processor . In some embodi 
ments , the result of 311 is a series of activation maps or 
activation layers . In some embodiments , vector processing is 
performed using a vector engine such as vector engine 111 
of FIG . 1 . 
[ 0057 ] At 313 , post - processing is performed . For example , 
a pooling layer may be implemented using a post - processing 
processor such as post - processing unit 115 of FIG . 1 . In 
various embodiments , different post - processing techniques , 
including different pooling techniques such as maxpooling , 
may be implemented during the post - processing stage of 
313 . 
[ 0058 ] In various embodiments , the process of FIG . 3 is 
utilized for each layer of a convolution neural network 
( CNN ) . Multiple passes of the process of FIG . 3 may be 
utilized to implement a multi - layer CNN . For example , the 
output of 313 may be utilized as data input for step 301 . In 
some embodiments , the process of FIG . 3 must be repeated 
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one or more times to complete a single layer . For example , 
in the scenario where the sensor data is larger in dimension 
than the number of computation units of the computational 
array , the sensor data may be sliced into smaller regions that 
fit the computational array and the process of FIG . 3 is 
repeated on each of the sliced regions . 
[ 0059 ] FIG . 4 is a block diagram illustrating an embodi 
ment of a computation unit of a computational array . In the 
example shown , computation unit 400 includes input values 
weight 402 , data 404 , and ResultIn 406 ; signals ClearAcc 
signal 408 , Clock signal 410 , ResultEnable signal 412 , 
ResultCapture signal 414 , and ShiftEn signal 416 ; compo 
nents accumulator 424 , multiplexer 426 , shadow register 
428 , multiplier 430 , and adder 432 ; logic 434 , 436 , and 438 ; 
and output value ResultOut 450 . In some embodiments , 
logic 434 , 436 , and 438 are AND gates . In some embodi 
ments , additional signals are included as appropriate . In 
various embodiments , the computation unit of FIG . 4 is 
repeated for each of the plurality of computation units , such 
as computation unit 109 , of a computation array such as 
matrix processor 107 of FIG . 1 . Computation unit 400 may 
be utilized to implement computational operations in paral 
lel . In various embodiments , each computation unit of a 
computational array performs computations in parallel with 
the other computation units . In various embodiments , com 
putation unit 400 is a sub - circuit of a matrix processor that 
includes the functionality for performing one or more mul 
tiply , add , accumulate , and / or shift operations . For example , 
computation unit 400 may be a sub - circuit that includes the 
functionality for performing a dot - product operation . 
[ 0060 ] In some embodiments , Clock signal 410 is a clock 
signal received by computation unit 400 . In various embodi 
ments , each computation unit of the computational array 
receives the same clock signal and the clock signal is utilized 
to synchronize the processing of each computation unit with 
the other computation units . 
[ 0061 ] In the example shown , multiplier 430 receives and 
performs a multiplication operation on the input values data 
404 and weight 402 . The output of multiplier 430 is fed to 
adder 432 . Adder 432 receives and performs an addition on 
the output of multiplier 430 and the output of logic 434 . The 
output of adder 432 is fed to accumulator 424 . In some 
embodiments , input values data 404 and weight 402 are lines 
that cross computation units and feed the corresponding data 
and / or weight to neighboring computation units . For 
example , in some embodiments , data 404 is fed to all 
computation units in the same column and weight 402 is fed 
to all computation units in the same row . In various embodi 
ments , data 404 and weight 402 correspond to input ele 
ments fed to computation unit 400 from a data hardware data 
formatter and a weight hardware data formatter , respec 
tively . In some embodiments , the data hardware data for 
matter and the weight hardware data formatter are data 
formatter 104 and weight formatter 106 of FIG . 1 , respec 
tively . 
[ 0062 ] In some embodiments , ClearAcc signal 408 clears 
the contents of accumulator 424 . As an example , accumu 
lation operations can be reset by clearing accumulator 424 
and used to accumulate the result of multiplier 430 . In some 
embodiments , ClearAcc signal 408 is used to clear accumu 
lator 424 for performing a new dot - product operation . For 
example , elements - wise multiplications are performed by 
multiplier 430 and the partial - dot - product results are added 
using adder 432 and accumulator 424 . 

[ 0063 ] In various embodiments , accumulator 424 is an 
accumulator capable of accumulating the result of adder 432 
and indirectly the result of multiplier 430 . For example , in 
some embodiments , accumulator 424 is configured to accu 
mulate the result of multiplier 430 with the contents of 
accumulator 424 based on the status of ClearAcc signal 408 . 
As another example , based on the status of ClearAcc signal 
408 , the current result stored in accumulator 424 may be 
ignored by adder 432 . In the example shown , accumulator 
424 is a 32 - bit wide accumulator . In various embodiments , 
accumulator 424 may be sized differently , e . g . , 8 - bits , 
16 - bits , 64 - bits , etc . , as appropriate . In various embodi 
ments , each accumulator of the plurality of computation 
units of a computational array is the same size . In various 
embodiments , accumulator 424 may accumulate and save 
data , accumulate and clear data , or just clear data . In some 
embodiments , accumulator 424 may be implemented as an 
accumulation register . In some embodiments , accumulator 
424 may include a set of arithmetic logic units ( ALUS ) that 
include registers . 
[ 0064 ] In some embodiments , ResultEnable signal 412 is 
activated in response to a determination that data 404 is 
valid . For example , ResultEnable signal 412 may be enabled 
to enable processing by a computation unit such as process 
ing by multiplier 430 and adder 432 into accumulator 424 . 
[ 0065 ] In some embodiments , ResultCapture signal 414 is 
utilized to determine the functionality of multiplexer 426 . 
Multiplexer 426 receives as input ResultIn 406 , output of 
accumulator 424 , and ResultCapture signal 414 . In various 
embodiments , ResultCapture signal 414 is used to enable 
either ResultIn 406 or the output of accumulator 424 to pass 
through as the output of multiplexer 426 . In some embodi 
ments , multiplexer 426 is implemented as an output register . 
In some embodiments , ResultIn 406 is connected to a 
computation unit in the same column as computation unit 
400 . For example , the output of a neighboring computation 
unit is fed in as an input value ResultIn 406 to computation 
unit 400 . In some embodiments , the input of a neighboring 
computation unit is the computation unit ' s corresponding 
ResultOut value . 
[ 0066 ] In some embodiments , shadow register 428 
receives as input the output of multiplexer 426 . In some 
embodiments , shadow register 428 is configured to receive 
the output of accumulator 424 via multiplexer 426 depend 
ing on the value of ResultCapture signal 414 . In the example 
shown , the output of shadow register 428 is output value 
ResultOut 450 . In various embodiments , once a result is 
inserted into shadow register 428 , accumulator 424 may be 
used to commence new calculations . For example , once the 
final dot - product result is stored in shadow register 428 , 
accumulator 424 may be cleared and used to accumulate and 
store the partial result and eventually the final result of a new 
dot - product operation on new weight and data input values . 
In the example shown , shadow register 428 receives a signal 
ShiftEn signal 416 . In various embodiments , ShiftEn signal 
416 is used to enable or disable the storing of values in the 
shadow register 428 . In some embodiments , ShiftEn signal 
416 is used to shift the value stored in shadow register 428 
to output value ResultOut 450 . For example , when ShiftEn 
signal 416 is enabled , the value stored in shadow register 
428 is shifted out of shadow register 428 as output value 
ResultOut 450 . In some embodiments , ResultOut 450 is 
connected to a neighboring computation unit ' s input value 
ResultIn . In some embodiments , the last cell of a column of 
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computation units is connected to the output of the compu 
tational array . In various embodiments , the output of the 
computational array feeds into a vector engine such as 
vector engine 111 of FIG . 1 for vector processing . For 
example , the output ResultOut 450 of a computation cell 
such as computation cell 109 of FIG . 1 may be fed into a 
processing element of a vector engine such as processing 
element 113 of vector engine 111 of FIG . 1 . 
[ 0067 ] In the example shown , shadow register 428 is 
32 - bits wide . In various embodiments , shadow register 428 
may be sized differently , e . g . , 8 - bits , 16 - bits , 64 - bits , etc . , as 
appropriate . In various embodiments , each shadow register 
of the plurality of computation units of a computational 
array is the same size . In various embodiments , shadow 
register 428 is the same size as accumulator 424 . In various 
embodiments , the size of multiplexer 426 is based on the 
size of accumulator 424 and / or shadow register 428 ( e . g . , the 
same size or larger ) . 
[ 0068 ] In some embodiments , logic 434 , 436 , and 438 
receive signals , such as control signals , to enable and / or 
configure the functionality of computation unit 400 . In 
various embodiments , logic 434 , 436 , and 438 are imple 
mented using AND gates and / or functionality corresponding 
to an AND gate . For example , as described above , logic 434 
receives ClearAcc signal 408 and an input value correspond 
ing to the value stored in accumulator 424 . Based on 
ClearAcc signal 408 , the output of logic 434 is determined 
and fed to adder 432 . As another example , logic 436 receives 
ResultEnable signal 412 and Clock signal 410 . Based on 
ResultEnable signal 412 , the output of logic 436 is deter 
mined and fed to accumulator 424 . As another example , 
logic 438 receives ShiftEn signal 416 and Clock signal 410 . 
Based on ShiftEn signal 416 , the output of logic 438 is 
determined and fed to shadow register 428 . 
[ 0069 ] In various embodiments , computation units may 
perform a multiplication , an addition operation , and a shift 
operation at the same time , i . e . , within a single cycle , 
thereby doubling the total number of operations that occur 
each cycle . In some embodiments , results are moved from 
multiplexer 426 to shadow register 428 in a single clock 
cycle , i . e . , without the need of intermediate execute and save 
operations . In various embodiments , the clock cycle is based 
on the signal received at Clock signal 410 . 
[ 0070 ] In various embodiments , input values weight 402 
and data 404 are 8 - bit values . In some embodiments , weight 
402 is a signed value and data 404 is unsigned . In various 
embodiments , weight 402 and data 404 may be signed or 
unsigned , as appropriate . In some embodiments , ResultIn 
406 and ResultOut 450 are 32 - bit values . In various embodi 
ments ResultIn 406 and ResultOut 450 are implemented 
using a larger number of bits than input operands weight 402 
and data 404 . By utilizing a large number of bits , the results 
of multiplying multiple pairs of weight 402 and data 404 , for 
example , to calculate a dot - product result , may be accumu 
lated without overflowing the scalar result . 
10071 ] In some embodiments , computation unit 400 gen 
erates an intermediate and / or final computation result in 
accumulator 424 . The final computation result is then stored 
in shadow register 428 via multiplexer 426 . In some embodi 
ments , multiplexer 426 functions as an output register and 
store the output of accumulator 424 . In various embodi 
ments , the final computation result is the result of a convo 
lution operation . For example , the final result at ResultOut 
450 is the result of convolution between a filter received by 

computation unit 400 as input values using weight 402 and 
a two - dimensional region of sensor data received by com 
putation unit 400 as input values using data 404 . 
[ 0072 ] As an example , a convolution operation may be 
performed using computation unit 400 on a 2x2 data input 
matrix [ do dl ; d2 d3 ] corresponding to a region of sensor 
data and a filter corresponding to a 2x2 matrix of weights 
[ w0 wl ; w2 w3 ] . The 2x2 data input matrix has a first row 
[ do d1 ] and a second row [ d2 d3 ] . The filter matrix has a first 
row [ wo wl ] and a second row [ w2 w3 ] . In various 
embodiments , computation unit 400 receives the data matrix 
via data 404 as a one - dimensional input vector [ d0 dl d2 d3 ] 
one element per clock cycle and weight matrix via weight 
402 as a one - dimensional input vector ( wo wl w2 w3 ] one 
element per clock cycle . Using computation unit 400 , the dot 
product of the two input vectors is performed to produce a 
scalar result at ResultOut 450 . For example , multiplier 430 
is used to multiply each corresponding element of the input 
weight and data vectors and the results are stored and added 
to previous results in accumulator 424 . For example , the 
result of element do multiplied by element wo ( e . g . , d0 * w0 ) 
is first stored in cleared accumulator 424 . Next , element di 
is multiplied by element wl and added using adder 432 to 
the previous result stored in accumulator 424 ( e . g . , d0 * wo ) 
to compute the equivalent of d0 * w0 + d1 * wl . Processing 
continues to the third pair of elements d2 and w2 to compute 
the equivalent of d0 * wO + d1 * w1 + d2 * w2 at accumulator 
424 . The last pair of elements is multiplied and the final 
result of the dot product is now stored in accumulator 424 
( e . g . , d0 * w0 + d1 * wl + d2 * w2 + d3 * w3 ) . The dot - product 
result is then copied to shadow register 428 . Once stored in 
shadow register 428 , a new dot - product operation may be 
initiated , for example , using a different region of sensor data . 
Based on ShiftEn signal 416 , the dot - product result stored in 
shadow register 428 is shifted out of shadow register 428 to 
ResultOut 450 . In various embodiments , the weight and data 
matrices may be different dimensions than the example 
above . For example , larger dimensions may be used . 
10073 ] . In some embodiments , a bias parameter is intro 
duced and added to the dot - product result using accumulator 
424 . In some embodiments , the bias parameter is received as 
input at either weight 402 or data 404 along with a multi 
plication identity element as the other input value . The bias 
parameter is multiplied against the identity element to 
preserve the bias parameter and the multiplication result 
( e . g . , the bias parameter ) is added to the dot - product result 
using adder 432 . The addition result , a dot - product result 
offset by a bias value , is stored in accumulator 424 and later 
shifted out at ResultOut 450 using shadow register 428 . In 
some embodiments , a bias is introduced using a vector 
engine such as vector engine 111 of FIG . 1 . 
[ 0074 ] FIG . 5 is a block diagram illustrating an embodi 
ment of a cache - enabled microprocessor system for per 
forming machine learning processing . The microprocessor 
system of FIG . 5 includes hardware data formatters that 
interface with a cache to prepare input values for a compu 
tational array such as a matrix processor . In various embodi 
ments , incorporating a memory cache and using hardware 
data formatters to populate the cache increases the through 
put of the matrix processor and allows the microprocessor 
system to operate at a higher clock rate than would otherwise 
be allowed . In the example shown , microprocessor system 
500 includes control unit 501 , memory 502 , cache 503 , data 
formatter 504 , weight formatter 506 , and matrix processor 
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507 . Input data and weight data are retrieved by hardware 
data formatters 504 , 506 from memory 502 via cache 503 . 
The retrieved input values are formatted using data formatter 
504 and weight formatter 506 to prepare vector operands for 
matrix processor 507 . In some embodiments , data formatter 
504 and weight formatter 506 include a logic circuit for 
preparing data for matrix processor 507 and / or a memory 
cache or buffer for storing and processing input data . For 
example , data formatter 504 may prepare N operands from 
a two - dimensional array retrieved from memory 502 via 
cache 503 . Weight formatter 506 may prepare M operands 
retrieved from memory 502 via cache 503 that correspond to 
weight values . Data formatter 504 and weight formatter 506 
prepare the N and M operands to be processed by matrix 
processor 507 . 
[ 0075 ] In various embodiments , microprocessor system 
500 is microprocessor system 100 of FIG . 1 depicted with a 
memory and memory cache . With respect to microprocessor 
100 of FIG . 1 , in various embodiments , control unit 501 is 
control unit 101 , data formatter 504 is data formatter 104 , 
weight formatter 506 is weight formatter 106 , and matrix 
processor 507 is matrix processor 107 of FIG . 1 . Further , 
with respect to microprocessor 100 of FIG . 1 , in various 
embodiments , memory 502 and cache 503 are memory 102 
and cache 103 of FIG . 1 . In some embodiments , micropro 
cessor system 500 , including at least hardware data format 
ter 504 , weight formatter 506 , and matrix processor 507 , 
performs the processes described with respect to FIGS . 7 
and 8 and portions of processes described with respect to 
FIGS . 2 and 3 . 
[ 0076 ] In some embodiments , matrix processor 507 is a 
computational array that includes a plurality of computation 
units . For example , a matrix processor receiving M operands 
and N operands from weight formatter 506 and data for 
matter 504 , respectively , includes MxN computation units . 
In the figure shown , the small squares inside matrix proces 
sor 507 depict that matrix processor 507 includes a logical 
two - dimensional array of computation units . Computation 
unit 509 is one of a plurality of computation units of matrix 
processor 507 . In some embodiments , each computation unit 
is configured to receive one operand from data formatter 504 
and one operand from weight formatter 506 . Matrix proces 
sor 507 and computation unit 509 are described in further 
detail with respect to matrix processor 107 and computation 
unit 109 , respectively , of FIG . 1 . Input values to matrix 
processor 507 are received from data formatter 504 and 
weight formatter 506 and described in further detail with 
respect to inputs from data formatter 104 and weight for 
matter 106 to matrix processor 107 of FIG . 1 . 
[ 0077 ] In the example shown , the dotted arrows between 
data formatter 504 and matrix processor 507 and between 
weight formatter 506 and matrix processor 507 depict a 
coupling between the respective pairs of components that 
are capable of sending multiple data elements such as a 
vector of data elements . In various embodiments , the data 
width of components data formatter 504 , weight formatter 
506 , and matrix processor 507 are wide data widths and 
include the ability to transfer more than one operand in 
parallel . The data widths of components data formatter 504 , 
weight formatter 506 , and matrix processor 507 are 
described in further detail with respect to corresponding 
components data formatter 104 , weight formatter 106 , and 
matrix processor 107 of FIG . 1 . 

[ 0078 ] In various embodiments , the arrows in FIG . 5 
describe the direction data and / or control signals flow from 
component to component . In some embodiments , the con 
nections depicted by the one - direction arrows in FIG . 5 ( e . g . , 
between data formatter 504 and cache 503 , between weight 
formatter 506 and cache 503 , and between cache 503 and 
memory 502 ) may be bi - directional and thus the data and / or 
control signals may flow in both directions . For example , in 
some embodiments , control signals , such as a read request 
and / or data , can flow from cache 503 to memory 502 . 
[ 0079 ] In various embodiments , memory 502 is typically 
static random access memory ( SRAM ) . In some embodi 
ments , memory 502 has a single read port or a limited 
number of read ports . In some embodiments , the amount of 
memory 502 dedicated to storing data ( e . g . , sensor data , 
image data , etc . ) , weights ( e . g . , weight associated with 
image filters , etc . ) , and / or other data may be dynamically 
allocated . For example , memory 502 may be configured to 
partition more or less memory for data input compared to 
weight input based on a particular workload . In some 
embodiments , cache 503 includes one or more cache lines . 
For example , in some embodiments , cache 503 is a 1 KB 
cache that includes four cache lines where each cache line is 
256 bytes . In various embodiments , the size of the cache 
may be larger or small , with fewer or more cache lines , have 
larger or smaller cache lines , and may be determined based 
on expected computation workload . 
[ 0080 ] In various embodiments , hardware data formatters 
( e . g . , data formatter 504 and weight formatter 506 ) calculate 
memory addresses to retrieve input values from memory 502 
and cache 503 for processing by matrix processor 507 . In 
some embodiments , data formatter 504 and / or weight for 
matter 506 stream data corresponding to a subset of values 
stored consecutively in memory 502 and / or cache 503 . Data 
formatter 504 and / or weight formatter 506 may retrieve one 
or more subsets of values stored consecutively in memory 
and prepare the data as input values for matrix processor 
507 . In various embodiments , the one or more subsets of 
values are not themselves stored consecutively in memory 
with other subsets . In some embodiments , memory 502 
contains a single read port . In some embodiments , memory 
502 contains a limited number of read ports and the number 
of read ports is fewer than the data width of components data 
formatter 504 , weight formatter 506 , and matrix processor 
507 . In some embodiments , hardware data formatters 504 , 
506 will perform a cache check to determine whether a 
subset of values is in cache 503 prior to issuing a read 
request to memory 502 . In the event the subset of values is 
cached , hardware data formatters 504 , 506 will retrieve the 
data from cache 503 . In various embodiments , in the event 
of a cache miss , hardware data formatters 504 , 506 will 
retrieve the entire subset of values from memory 502 and 
populate a cache line of cache 503 with the retrieved values . 
[ 0081 ] In some embodiments , control unit 501 initiates 
and synchronizes processing between components of micro 
processor system 500 , including components memory 502 , 
data formatter 504 , weight formatter 506 , and matrix pro 
cessor 507 . In some embodiments , control unit 501 coordi 
nates access to memory 502 including the issuance of read 
requests . In some embodiments , control unit 501 interfaces 
with memory 502 to initiate read requests . In various 
embodiments , the read requests are initiated by hardware 
data formatters 504 , 506 via the control unit 501 . In various 
embodiments , control unit 501 synchronizes data that is fed 



US 2019 / 0026237 A1 Jan . 24 , 2019 

to matrix processor 507 from data formatter 504 and weight 
formatter 506 . In some embodiments , control unit 501 
synchronizes the data between different components of 
microprocessor system 500 including between data format 
ter 504 , weight formatter 506 , and matrix processor 507 , by 
utilizing processor specific memory , queue , and / or dequeue 
operations and / or control signals . Additional functionality 
performed by control unit 501 is described in further detail 
with respect to control unit 101 of FIG . 1 . 
[ 0082 ] In some embodiments , microprocessor system 500 
is utilized for performing convolution operations . For 
example , matrix processor 507 may be used to perform 
calculations , including dot - product operations , associated 
with one or more convolution layers of a convolution neural 
network . Data formatter 504 and weight formatter 506 may 
be utilized to prepare matrix and / or vector data in a format 
for processing by matrix processor 507 . Memory 502 may 
be utilized to store data such as one or more image channels 
captured by sensors ( not shown ) . Memory 502 may also 
include weights , including weights in the context of convo 
lution filters , determined by training a machine learning 
model for autonomous driving . 
10083 ] In various embodiments , microprocessor system 
500 may include additional components ( not shown in FIG . 
5 ) , including processing components , such as a vector 
processor and a post - processing unit . An example of a vector 
processor and its associated functionality is vector engine 
111 of FIG . 1 . An example of a post - processing unit and its 
associated functionality is post - processing unit 115 of FIG . 
1 

[ 0084 ] FIG . 6 is a block diagram illustrating an embodi 
ment of a hardware data formatter , cache , and memory 
components of a microprocessor system . In the example 
shown , the components include memory 601 , cache 603 , 
and hardware data formatter 605 . Memory 601 is commu 
nicatively connected to cache 603 and cache 603 is com 
municatively connected to hardware data formatter 605 . 
Cache 603 includes four cache lines 611 , 613 , 615 , and 617 . 
Hardware data formatter 605 includes twelve read buffers 
621 - 632 . Read buffers 621 - 632 are each 8 - byte read buffers . 
In various embodiments , the number of and size of the read 
buffers may be fewer or more than depicted in the embodi 
ment of FIG . 6 . For example , read buffers 621 - 632 are sized 
to accommodate a 96 element input vector , where each 
element is 1 - byte , to a computational array . In various 
embodiments , read buffers 621 - 632 may be implemented as 
a single wide register , a single memory storage location , 
individual registers , or individual memory storage locations , 
among other implementations , as appropriate . In some 
embodiments , memory 601 and cache 603 are memory 502 
and cache 503 of FIG . 5 , respectively . In some embodi 
ments , hardware data formatter 605 is data formatter 104 
and / or weight formatter 106 of FIG . 1 . In some embodi 
ments , hardware data formatter 605 is data formatter 504 
and / or weight formatter 506 of FIG . 5 . 
[ 0085 ] In various embodiments , a control unit ( not shown ) 
such as control unit 101 of FIG . 1 and a computational array 
( not shown ) such as matrix processor 107 of FIG . 1 are 
components of the microprocessor system . For example , a 
control unit sends signals to synchronize the processing of 
computational operations and / or access to memory 601 . In 
various embodiments , a computational array receives input 
vectors from one or more hardware data formatters as input 
operands . For example , a matrix processor may receive two 

vector inputs , one from a data formatter and one from a 
weight formatter , to perform matrix processing on . As 
another example , a matrix processor may receive two matri 
ces , one from a data formatter and one from a weight 
formatter , to perform matrix processing on . In various 
embodiments , multiple clock cycles are needed to feed an 
entire matrix into a computational array . For example , in 
some embodiments , at most one row ( and / or column ) of a 
matrix is fed into a computational array each clock cycle . 
[ 0086 ] In various embodiments , the output of hardware 
data formatter 605 is fed as input to a computational array 
such as matrix processor 107 of FIG . 1 and matrix processor 
507 of FIG . 5 . In various embodiments , each element of 
each read buffer of hardware data formatter 605 is fed into 
a computation unit of a computational array . For example , 
the first byte of read buffer 621 is fed into a first computation 
unit of a computational array , the second byte of read buffer 
621 is fed into a second computation unit of a computational 
array , the third byte of read buffer 621 is fed into a third 
computation unit of a computational array , and so forth , with 
the last byte of read buffer 621 ( i . e . , the eighth byte ) feeding 
into the eighth computation unit of a computational array . 
The next read buffer then feeds its elements into the next set 
of computation units . For example , the first byte of read 
buffer 622 is fed into a ninth computation unit of a compu 
tational array and the last byte of read buffer 632 is fed into 
a ninety - sixth computation unit of a computational array . In 
various embodiments , the size and number of the read 
buffers and the number of computation units may vary . As 
explained above , in the example shown , hardware data 
formatter 605 includes 12 read buffers 621 - 632 configured 
to each store eight consecutive bytes . Hardware data for 
matter 605 may be configured to feed into a computation 
unit that may receive at least one input vector of 96 1 - byte 
elements . 
[ 0087 ] In some embodiments , only a portion of the ele 
ments in read buffers 621 - 632 is utilized as input to a 
computational array . For example , a two - dimensional 80x80 
matrix may only utilize read buffers 621 - 630 ( corresponding 
to 80 bytes , numbered bytes 0 - 79 ) to feed an 80 - element row 
into a matrix processor . In various embodiments , hardware 
data formatter 605 may perform additional processing on 
one or more elements of read buffers 621 - 632 to prepare the 
elements as input to a computational array . For example , a 
computational array may be configured to receive 48 16 - bit 
elements instead of 96 8 - bit elements and hardware data 
formatter 605 may be configured to combine pairs of 1 - byte 
elements to form 16 - bit elements to prepare a 48 16 - bit input 
vector for the computational array . 
[ 0088 ] In various embodiments , cache 603 is a memory 
cache of memory 601 . In some embodiments , memory 601 
is implemented using static random access memory 
( SRAM ) . In some embodiments , cache 603 is a 1 KB 
memory cache and each cache line 611 , 613 , 615 , and 617 
is 256 bytes . In various embodiments , reading data into 
cache 603 loads an entire cache line of data into one of cache 
lines 611 , 613 , 615 , and 617 . In various embodiments , cache 
603 may be larger or small and have fewer or more cache 
lines . Moreover , in various embodiments , the cache lines 
may be a different size . The size and configuration of cache 
603 , cache lines 611 , 613 , 615 , and 617 , and memory 601 
may be sized as appropriate for the particular workload of 
computational operations . For example , the size and number 
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of image filters used for convolution may dictate a larger or 
smaller cache line and a larger or smaller cache . 
[ 0089 ] In the example shown , the dotted - lined arrows 
originating from read buffers 621 - 632 indicate whether the 
data requested by hardware data formatter 605 exists as a 
valid entry in cache 603 and in particular which cache line 
holds the data . For example , read buffers 621 , 622 , and 623 
request data that is found in cache line 611 . Read buffers 626 
and 627 request data that is found in cache line 613 and read 
buffers 630 , 631 , and 632 request data that is found in cache 
line 617 . In various embodiments , each read buffer stores a 
subset of values located consecutively in the memory . The 
subsets of values stored at read buffers 621 , 622 , and 623 
may not be located consecutively in memory with the 
subsets of values stored at read buffers 626 and 627 and also 
may not be located consecutively in memory with the 
subsets of values stored at read buffers 630 , 631 , and 632 . In 
some scenarios , read buffers referencing the same cache line 
may store subsets of values that are not located consecu 
tively in memory . For example , two read buffers may 
reference the same cache line of 256 bytes but different 
8 - byte subsets of consecutive values . 
[ 0090 ] In the example shown , the data requested for read 
buffers 624 , 625 , 628 , and 629 are not found in cache 603 
and are cache misses . In the example shown , an “ X ” depicts 
a cache miss . In various embodiments , cache misses must be 
resolved by issuing a read for the corresponding subset of 
data from memory 601 . In some embodiments , an entire 
cache line containing the requested subset of data is read 
from memory 601 and placed into a cache line of cache 603 . 
Various techniques for cache replacement may be utilized as 
appropriate . Examples of cache replacement policies for 
determining the cache line to use include First In First Out , 
Least Recently Used , etc . 
10091 ] In some embodiments , each of read buffers 621 
632 stores a subset of values located consecutively in 
memory . For example , in the example shown , read buffer 
621 is 8 - bytes in size and stores a subset of 8 - bytes of values 
stored consecutively in memory . In various embodiments , 
the values are located consecutively in memory 601 and read 
as a continuous block of values into a cache line of cache 
603 . By implementing read buffers using the concept of a 
subset of values , where each of the values is located con 
secutively in memory , each read buffer is capable of loading 
multiple elements ( e . g . , up to eight elements for an 8 - byte 
read buffer ) together . In the example shown , a fewer number 
of reads are required than the number of elements to 
populate every read buffer with an element . For example , up 
to twelve reads are required to load 96 - elements into the 
twelve read buffers 621 - 632 . In many scenarios , even fewer 
reads are necessary in the event that a cache contains the 
requested subset of data . Similarly , in some scenarios , a 
single cache line is capable of storing the data requested for 
multiple read buffers . 
[ 0092 ] In some embodiments , read buffers 621 - 632 are 
utilized by hardware data formatter 605 to prepare input 
operands such as an vector of inputs for a computational 
array , such as matrix processor 107 of FIG . 1 . In some 
embodiments , the 96 - bytes stored in read buffers 621 - 632 
correspond to a 96 - element input vector for a computational 
array . In some embodiments , hardware data formatter 605 
selects elements from read buffers 621 - 632 to accommodate 
a particular stride when performing a computational opera 
tion such as convolution . In some embodiments , hardware 

data formatter 605 selectively filters out the elements from 
read buffers 621 - 632 that are not required for the computa 
tional operation . For example , hardware data formatter may 
only utilize a portion of the elements from each read buffer 
( e . g . , every other byte of a read buffer ) as the input vector 
elements for the computational array . In some embodiments , 
the filtering is performed using a multiplexer to selectively 
include elements from read buffers 621 - 632 when preparing 
an input vector for a computational operation . In various 
embodiments , the unused bytes of the read buffer may be 
discarded . 
[ 0093 ] As an example , in a scenario with a stride param 
eter set to two , the initial input elements for a convolution 
operation are every other element of a row of an input 
matrix . Depending on the input matrix size , the elements 
include the 1st , 3rd , 5th , and 7th elements , etc . , for the first 
group of input elements necessary for a convolution opera 
tion . Read buffer 621 is configured to read the first 8 
elements ( 1 through 8 ) , and thus elements 2 , 4 , 6 , and 8 are 
not needed for a stride of two . As another example , using a 
stride of five , four elements are skipped when determining 
the start of the next neighboring region . Depending on the 
size of the input data , the 1st , 6th , 11th , 16th , and 21st 
elements , etc . , are the first input elements necessary for a 
convolution operation . The elements 2 - 5 and 7 - 8 are loaded 
into a read buffer 621 but are not used for calculating the first 
dot - product component result corresponding to each region 
and may be filtered out . 
[ 0094 ] In various embodiments , each read buffer loads 
eight consecutive elements and can satisfy two elements for 
a stride of five . For example , read buffer 621 initiates a read 
at element 1 and also reads in element 6 , read buffer 621 
initiates a read at element 11 and also reads in element 16 , 
read buffer 622 initiates a read at element 21 and also reads 
in element 26 , etc . In some embodiments , the reads are 
aligned to multiples of the read buffer size . In some embodi 
ments , only the first read buffer is aligned to a multiple of the 
read buffer size . In various embodiments , only the start of 
each matrix row must be aligned to a multiple of the read 
buffer size . Depending on the stride and the size of the input 
matrix , in various embodiments , only a subset of the read 
buffers may be utilized . In various embodiments , the ele 
ments corresponding to least twelve regions , one element for 
each read buffer 621 - 632 , are loaded and fed to a compu 
tational array in parallel . In various embodiments , the num 
ber of input elements provided in parallel to a computational 
array is at least the number of read buffers in the hardware 
data formatter . 
[ 0095 ] In some embodiments , the elements not needed for 
the particular stride are filtered out and not passed to the 
computational array . In various embodiments , using , for 
example , a multiplexer , the input elements conforming to the 
stride are selected from the loaded read buffers and format 
ted into an input vector for a computational array . Once the 
input vector is formatted , hardware data formatter 605 feeds 
the input vector to the computational array . The unneeded 
elements may be discarded . In some embodiments , the 
unneeded elements may be utilized for the next dot - product 
component and a future clock cycle and are not discarded 
from read buffers 621 - 632 . In various embodiments , the 
elements not needed for implementing a particular stride are 
fed as inputs to a computational array and the computational 
array and / or post - processing will filter the results to remove 
them . For example , the elements not needed may be pro 
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vided as input to a computation array but the computation 
units corresponding to the unnecessary elements may be 
disabled . 
10096 ] . In some embodiments , hardware data formatter 
605 formats the input vector for a computational array to 
include padding . For example , hardware data formatter 605 
may insert padding using read buffers 621 - 632 . In various 
embodiments , one or more padding parameters may be 
described by a control unit using a control signal and / or 
instruction parameter . 
[ 0097 ] In some embodiments , hardware data formatter 
605 determines a set of addresses for preparing operands for 
a computational array . For example , hardware data formatter 
605 calculates associated memory locations required to load 
a subset of values , determines whether the subset is cached , 
and potentially issues a read to memory for the subset in the 
event of a cache miss . In some scenarios , a pending read 
may satisfy a cache miss . In various embodiments , hardware 
data formatter 605 only processes the memory address 
associated with the start element and end element of each 
read buffer 621 - 632 . In various embodiments , each read 
buffer 621 - 632 associates the validity of the cache entry for 
a subset of values with the memory addresses of the start and 
end values of the corresponding read buffer . In the example 
shown , read buffer 621 is configured to store 8 - bytes cor 
responding to up to eight elements . In various embodiments , 
hardware data formatter 605 calculates the address of the 
first element and the address of the last element of read 
buffer 621 . Hardware data formatter 605 performs a cache 
check on the first and last element addresses . In the event 
either of the addresses is a cache miss , hardware data 
formatter 605 issues a memory read for 8 - bytes starting at 
the address of the first element . In the event that both 
addresses are a cache hit from the same cache line , hardware 
data formatter 605 considers every element in the subset to 
be a valid cache hit and loads the subset of values from the 
cache via the appropriate cache line . In this manner , an entire 
row of elements may be loaded by processing the addresses 
of at most the first and last addresses of each read buffer 
621 - 632 ( e . g . , at most 24 addresses ) . 
[ 0098 ] . FIG . 7 is a flow diagram illustrating an embodi 
ment of a process for performing machine learning process 
ing . The process of FIG . 7 describes a pipeline for slicing 
one or more matrices to fit a computational array , receiving 
a computational operation for the sliced matrix or matrices , 
preparing the data for performing the operation , and com 
puting one or more results associated with the operation . 
Depending on the application , the process of FIG . 7 may be 
repeated on different slices of a matrix and the results 
combined . For example , a frame of image data larger than a 
computational array may be sliced into smaller matrices and 
computational operations performed on the sliced matrices . 
The results of multiple passes of FIG . 7 on different slices 
may be combined to generate the result of a computational 
operation on the entire frame . In various embodiments , the 
process of FIG . 7 is performed by a microprocessor system 
such as the microprocessor system of FIGS . 1 and 5 . In 
various embodiments , the process of FIG . 7 is utilized to 
implement applications relying on computational operations 
such as convolution . For example , the process of FIG . 7 may 
be utilized to implement a machine learning application that 
performs inference using a machine learning model . In some 
embodiments , the process of FIG . 7 is utilized to implement 
the processes of FIGS . 2 and 3 . 

0099 ] At 701 , one or more matrices may be sliced . In 
some embodiments , the size of a matrix , for example , a 
matrix representing a frame of vision data , is larger than will 
fit in a computational array . In the event the matrix exceeds 
the size of the computational array , the matrix is sliced into 
a smaller two - dimensional matrix with a size limited to the 
appropriate dimensions of the computational array . In some 
embodiments , the sliced matrix is a smaller matrix with 
addresses to elements referencing the original matrix . In 
various embodiments , the sliced matrix is serialized into a 
vector for processing . In some embodiments , each pass of 
the process of FIG . 7 may slice a matrix into a different slice 
and slices may overlap with previous slices . In various 
embodiments , a data matrix and a weight matrix may both 
be sliced , although typically only a data matrix will require 
slicing . In various embodiments , matrices may be sliced 
only at boundaries corresponding to multiples of the read 
buffer size of a hardware data formatter . For example , in the 
event each read buffer is 8 - bytes in size , each row of a sliced 
matrix must begin with an address having a multiple of 
eight . In the event a matrix fits within the computational 
array , no slicing is required ( i . e . , the matrix slice used for the 
remaining steps of FIG . 7 is simply the original matrix ) . In 
various embodiments , the matrix slice ( s ) are used as input 
matrices for the computational operation of 703 . 
[ 0100 ] At 703 , a computational operation is received . For 
example , a matrix operation is received by the micropro 
cessor system . As one example , a computational operation 
requesting a convolution of an image with a filter is 
received . In some embodiments , the operation may include 
the necessary parameters to perform the computational 
operation including the operations involved and the oper 
ands . For example , the operation may include the size of the 
input operands ( e . g . , the size of each input matrix ) , the start 
address of each input matrix , a stride parameter , a padding 
parameter , and / or matrix , vector , and / or post - processing 
commands . For example , a computational operation may 
describe an image data size ( e . g . , 96x96 , 1920x1080 , etc . ) 
and bit depth ( e . g . , 8 - bits , 16 - bits , etc . ) and a filter size and 
bit depth , etc . In some embodiments , the computational 
operation is received by a control unit such as control unit 
101 of FIG . 1 and 501 of FIG . 5 . In some embodiments , a 
control unit processes the computational operation and per 
forms the necessary synchronization between components 
of the microprocessor system . In various embodiments , the 
computational operation is a hardware implementation using 
control signals . In some embodiments , the computational 
operation is implemented using one or more processor 
instructions . 
[ 0101 ] At 705 , each hardware data formatter receives a 
data formatting operation . In some embodiments , the data 
formatting operation is utilized to prepare input arguments 
for a computational array such as matrix processor 107 of 
FIG . 1 and 507 of FIG . 5 . For example , each hardware data 
formatter receives a data formatting operation that includes 
information necessary to retrieve the data associated with a 
computational operation ( e . g . , a start address of a matrix , a 
matrix size parameter , a stride parameter , a padding param 
eter , etc . ) and to prepare the data to be fed as input into the 
computational array . In some embodiments , the data for 
matting operation is implemented using control signals . In 
some embodiments , the data formatting operation is 
received by a hardware data formatter such as data formatter 
104 and 504 of FIGS . 1 and 5 , respectively , and weight 
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formatter 106 and 506 of FIGS . 1 and 5 , respectively . In 
some embodiments , hardware data formatter is hardware 
data formatter 605 of FIG . 6 . In some embodiments , a 
control unit such as control unit 101 of FIG . 1 and 501 of 
FIG . 5 interfaces with a hardware data formatter to process 
data formatting operations . 
[ 0102 ] At 707 , data addresses are processed by one or 
more hardware data formatters . For example , addresses 
corresponding to elements of the computational operation 
are processed by one or more hardware data formatters 
based on the formatting operations received at 705 . In some 
embodiments , the addresses are processed in order for the 
hardware data formatter to load the elements ( from a cache 
or memory ) and prepare an input vector for a computational 
array . In various embodiments , a hardware data formatter 
first calculates a pair of memory addresses for each subset of 
values to determine whether a subset of elements exists in a 
cache before issuing a request to memory in the event of a 
cache miss . In various embodiments , a read request to 
memory incurs a large latency that may be minimized by 
reading elements from a cache . In some scenarios , all 
elements are read from a cache and thus require any cache 
misses to first populate the cache by issuing a read to 
memory . To minimize the latency for each read , in various 
embodiments , the reads are performed on subsets of ele 
ments ( or values ) . In some embodiments , memory may only 
have a limited number of read ports , for example , a single 
read port , and all reads are processed one at a time . For 
example , performing 96 independent reads incurs the 
latency of 96 independent reads for a memory with a single 
read port . To reduce read latency , subsets of values are read 
together from memory into corresponding read buffers of a 
hardware data formatter . For example , using subsets of eight 
values , at most 12 memory reads are required to read 96 
values . In the event some of the subsets are in the cache from 
previous memory reads , even fewer memory reads are 
required . 
[ 0103 ] In various embodiments , subsets of values are 
prepared by determining the memory addresses for the start 
value of each subset ( where each value corresponds to an 
element ) and the end value of each subset . For example , to 
prepare a subset of 8 - values each of 1 - byte , a cache check 
is performed using the calculated address of the start value 
and the calculated address of the end value of the subset . In 
the event either of the addresses are cache misses , a memory 
read is issued to read 8 - bytes from memory beginning at the 
address of the start value . In some embodiments , in addition 
to reading the requested 8 - bytes from memory , an entire 
cache line of data ( corresponding to multiple subsets ) is read 
from memory and stored in the cache . In various embodi 
ments , in the event the start and end addresses of a subset are 
cached at the same cache line , the entire subset of values is 
considered cached and no cache check is needed for the 
remaining elements of the subset . The entire subset is 
considered cached in the event the start and end elements are 
cached in the same cache line . In various embodiments , the 
processing at 707 determines the addresses of the start value 
of the subset and the end value of the subset for each subset 
of values . In various embodiments , one read buffer exists for 
each subset of values . In various embodiments , read buffers 
of a hardware data formatter are read buffers 621 - 632 of 
hardware data formatter 605 of FIG . 6 . 
10104 ] In some embodiments , a stride parameter is imple - 
mented and non - consecutive subsets of values are loaded 

into each read buffer . In various embodiments , each subset 
of continuous values includes one or more elements needed 
to implement a particular stride parameter . For example , for 
a stride of one , every value in a subset of values located 
consecutively in memory is a utilized element . As another 
example , for a stride of two , every other value located 
consecutively in memory is utilized and a subset of eight 
consecutive values includes four utilized elements and four 
that are not utilized . As another example , for a stride of five , 
a subset of eight values located consecutively in memory 
may include two utilized elements and six unused elements . 
For each subset of elements located consecutively in 
memory , the memory addresses for the start and end ele 
ments of the subset are determined and utilized to perform 
a cache check at 709 . In various embodiments , the start 
element of the subset is the first element of the subset . In 
some embodiments , the end element of the subset is the last 
element of the subset , regardless of whether the element is 
utilized to implement the stride parameter . In some embodi 
ments , the end element of the subset is the last utilized 
element and not the last element of the subset . 
[ 0105 ] In various embodiments , once the number of uti 
lized elements that are included in a subset of consecutive 
elements is determined , the next subset of elements begins 
with the next element needed to satisfy the stride parameter . 
The next element may result in a memory location that is 
located at an address non - consecutive with the address of the 
last element of the previous subset . As an example , using a 
stride of five , four elements are skipped when determining 
the start of the next subset of values . Depending on the size 
of the input data , the 1st and 6th elements are stored in the 
first subset of values , 11th and 16th elements in the second 
subset of values , and 21st and 26th elements in the third 
subset of values , etc . In various embodiments , the second 
subset of values starts with the 11th element and the third 
subset of values starts with the 21st element . Each subset is 
located in memory at locations non - consecutive with the 
other subsets . Examples of unused elements in the first 
subset of values include the elements 2 - 5 and 7 - 8 . In some 
embodiments , the first row of each matrix is aligned to a 
multiple of the subset size . In some embodiments , this 
alignment restriction is required to prevent gaps of invalid 
values between rows when a matrix is serialized . In some 
embodiments , all subsets are aligned to the multiple of the 
subset size . 
[ 0106 ] In various embodiments , each subset of values is 
loaded in a read buffer such as read buffers 621 - 632 of FIG . 
6 . Depending on the particular application ( e . g . , the stride , 
the size of the input matrix , the size of the read buffer , the 
number of read buffers , etc . ) , some of the read buffers of a 
hardware data formatter may not be utilized . In some 
scenarios , the number of input elements provided in parallel 
to a computational array is at least the number of subsets . 
For example , a hardware data formatter supporting twelve 
subsets of values can provide at least twelve elements in 
parallel to a computational array . 
[ 0107 ] In some embodiments , the formatting performed 
by a hardware data formatter includes converting a matrix 
into a vector with elements of the vector fed to a computa 
tional array over multiple clock cycles . For example , in 
some embodiments , a matrix corresponding to data ( e . g . , 
image data ) is formatted to prepare vectors corresponding to 
sub - regions of the data . In some embodiments , each element 
fed to a computational array for a particular clock cycle 
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corresponds to the n - th element of a vector associated with 
a sub - region of the data . As an example , a 3x3 matrix may 
be formatted into a one - dimensional vector of nine elements . 
Each of the nine elements may be fed into the same 
computation unit of a computational array . In various 
embodiments , feeding the 9 elements requires are least 9 
clock cycles . 
[ 0108 ] At 709 , a determination is made whether the data 
corresponding to the addresses determined for each subset at 
707 are cached . For example , a cache check is performed on 
each subset by determining whether the data associated with 
the address of the start value of the subset and the address 
of the end value of the subset is in the same cache line . In 
various embodiments , a cache check is performed for each 
read buffer , such as read buffers 621 - 632 of FIG . 6 , of a 
hardware data formatter . In the event the data is cached , the 
processing continues to 713 . In various embodiments , the 
cache utilized is cache 503 of FIG . 5 and / or 603 of FIG . 6 . 
In the event the data is not cached , processing continues to 
711 . 
[ 0109 ] At 711 , each requested subset of data is read into 
the cache as an entire subset of values . In various embodi 
ments , each subset data is read into the cache from memory . 
In some embodiments , the memory is memory 102 of FIG . 
1 , 502 of FIG . 5 , and / or 601 of FIG . 6 . In some embodi 
ments , an entire cache line is read into the cache . For 
example , a cache miss for a subset of values results in 
loading the subset of values into a cache line along with the 
other data located consecutively with the subset of values in 
memory . In some scenarios , a single cache line is sufficient 
to cache multiple subsets . 
[ 0110 ] At 713 , matrix processing is performed . For 
example , a matrix processor performs a matrix operation 
using the data cached and received by a hardware data 
formatter . In various embodiments , the cached data is 
received by the hardware data formatter and processed 
according to a formatting operation by a hardware data 
formatter into input values for matrix processing . In some 
embodiments , the processing by the hardware data formatter 
includes filtering out a portion of the received cached data . 
For example , in some embodiments , subsets of values 
located consecutively in memory are read into the cache and 
received by the hardware data formatter . In various embodi 
ments , a computational operation may specify a stride 
and / or padding parameters . For example , to implement a 
specified stride for convolution , one or more data elements 
may be filtered from each subset of values . In some embodi 
ments , only a subset of the elements from each of the subsets 
of values is selected to create an input vector for matrix 
processing . 
[ 0111 ] In various embodiments , the matrix processor per 
forms the computational operation specified at 703 . For 
example , a matrix processor such as matrix processor 107 of 
FIG . 1 and 507 of FIG . 5 performs a matrix operation on 
input vectors received by hardware data formatters . In 
various embodiments , the matrix processor commences pro 
cessing once all the input operands are made available . The 
output of matrix processing is fed to 715 for optional 
additional processing . In various embodiments , the result of 
matrix processing is shifted out of a computational array one 
vector at a time . 
[ 0112 ] At 715 , vector and / or post - processing operations 
are performed . For example , vector processing may include 
the application of an activation function such as a rectified 

linear unit ( ReLU ) function . In some embodiments , vector 
processing includes scaling and / or normalization . In various 
embodiments , vector processing is performed on one vector 
of the output of a computational array at a time . In some 
embodiments , vector processing is performed by a vector 
processor such as vector engine 111 of FIG . 1 . In various 
embodiments , post - processing operations may be performed 
at 715 . For example , post - processing operations such as 
pooling may be performed using a post - processor unit . In 
some embodiments , post - processing is performed by a post 
processing processor such as post - processing unit 115 of 
FIG . 1 . In some embodiments , vector and / or post - processing 
operations are optional operations . 
[ 0113 ] FIG . 8 is a flow diagram illustrating an embodi 
ment of a process for retrieving input operands for a com 
putational array . The process of FIG . 8 describes a process 
for preparing data elements by a hardware data formatter for 
a computational array . For example , the input data is parti 
tioned into subsets based on the number of read buffers of a 
hardware data formatter . The process of FIG . 8 is utilized to 
load the corresponding read buffers with data corresponding 
to subsets of values located consecutively in memory . By 
partitioning values into subsets based on memory location 
and performing a single read on the entire subset instead of 
an individual read for each element , the latency incurred 
from accessing memory is reduced . In various embodiments , 
the process of FIG . 8 is performed by a microprocessor 
system such as the microprocessor system of FIGS . 1 and 5 . 
In various embodiments , the process of FIG . 8 is imple 
mented at 707 , 709 , 711 , and 713 of FIG . 7 . In various 
embodiments , the memory utilized by the process of FIG . 8 
is memory 102 of FIG . 1 , memory 502 of FIG . 5 , and / or 601 
of FIG . 6 . In various embodiments , the cache utilized by the 
process of FIG . 8 is cache 103 of FIG . 3 , cache 503 of FIG . 
5 , and / or 603 of FIG . 6 . In various embodiments , the process 
of FIG . 8 is performed at least in part by a hardware data 
formatter such as the hardware data formatters of FIGS . 1 , 
5 , and 6 . For example , a hardware data formatter may be 
utilized to perform the steps of 801 , 803 , 805 , 807 , 809 , 811 , 
813 , and portions of 815 . In some embodiments , the process 
of FIG . 8 is utilized to implement the processes of FIGS . 2 
and 3 . 
[ 0114 ] In some embodiments , the process of FIG . 8 is 
performed in parallel on different read buffers and / or subset 
of values . For example , in a scenario with eight read buffers , 
the data to be loaded into the read buffers may be partitioned 
into at most eight subsets and the process of FIG . 8 is 
performed on each subset in parallel . In some embodiments , 
the number of subsets is based on capabilities of the cache 
and / or the memory . For example , the number of subsets may 
be based on how many simultaneous cache checks may be 
performed on the cache and / or the number of simultaneous 
reads to memory that may be issued . 
[ 0115 ] At 801 , the first subset of data elements located 
consecutively in memory is processed . In various embodi 
ments , the first consecutive subset of data corresponds to the 
data element designated for the first read buffer of a hard 
ware data formatter . In some embodiments , the address of 
the first element must be a multiple of the number of 
elements in each subset . For example , using an 8 - byte read 
buffer , the address of the first element must be a multiple of 
eight . 
[ 0116 ] At 803 , start and end memory addresses are deter 
mined for the current subset . For example , the memory 
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address of the start element of a subset and the memory 
address of the end element of a subset are determined . In 
various embodiments , the start and end addresses are deter 
mined by a hardware data formatter , such as the hardware 
data formatters of FIGS . 1 , 5 , and 6 . 
[ 0117 ] At 805 , a determination is made on whether the 
subset of data is cached or pending a read . For example , a 
determination is made whether the data corresponding to the 
start and end addresses determined at 803 are cached at the 
same cache line or will be cached as a result of an already 
issued memory read . In some embodiments , a pending read 
for a different subset brings an entire cache line of data into 
memory and will result in caching the current subset . In the 
event the data is not cached or will not be cached as a result 
of a pending memory read , processing continues to 807 . In 
the event the data is cached or will be cached by a pending 
memory read , processing continues to 811 . 
[ 0118 ] At 807 , a determination is made on whether a 
memory read is already issued . In the event a memory read 
is already issued , processing completes for the current clock 
cycle . In the event a memory read has not been issued , 
processing continues to 809 . In some embodiments , the 
memory is configured with a single read port ( e . g . , to 
increase density ) and the memory can only process one read 
at a time . In various embodiments , the determination of 
whether a memory read has been issued is based on the 
capability of the memory configuration and / or the availabil 
ity of memory read ports . Not shown in FIG . 8 , in some 
embodiments , in the event an additional memory read is 
supported for the current clock cycle ( despite a pending 
read ) , processing continues to 809 ; otherwise processing 
completes for the current clock cycle . 
[ 0119 ] At 809 , a read is issued to cache a subset of data 
elements . For example , a block of memory beginning at the 
start address determined at 803 and extending for the length 
based on the size of a read buffer is read from memory into 
the memory cache . In various embodiments , an entire cache 
line of memory is read into the memory cache . For example , 
in a scenario with a cache line of 256 bytes and read buffers 
each capable of storing 8 - bytes , a memory read will read 256 
bytes of continuous data into a cache line , which corre 
sponds to 32 subsets of non - overlapping 8 - byte values . In 
various embodiments , reading a subset of values as a single 
memory read request reduces the latency associated with 
loading each element . Moreover , reading multiple subsets of 
values together may further reduce the latency by caching 
other subsets of values that may be associated with other 
read buffers . In some embodiments , loading multiple subsets 
of values takes advantage of potential locality between the 
subsets resulting in lower latency . In some embodiments , the 
read issued is arbitrated by a hardware arbiter such as arbiter 
123 of FIG . 1 and arbiter 905 of FIG . 9 using the processes 
described herein , especially with respect to FIGS . 10 - 12 . 
[ 0120 ] At 811 , a determination is made on whether there 
are additional subsets of data elements . In the event that 
every subset has been processed , processing continues to 
813 . In the event that there are additional subsets to be 
processed , processing loops back to 803 . In some embodi 
ments , depending on the input size , one or more read buffers 
of a hardware data formatter may not be utilized . 
[ 0121 ] At 813 , a determination is made on whether all the 
data elements are cached . In the event some elements are not 
cached , processing completes for the current clock cycle to 
allow the non - cached data elements to be loaded from 

memory into the cache . In the event all the data elements are 
cached , the data elements are all available for processing and 
processing proceeds to 815 . 
[ 0122 ] At 815 , matrix processing is performed . For 
example , the cached data elements are received at one or 
more hardware data formatters , formatted , and fed as input 
vector ( s ) to a computational array for processing . A com 
putational array , such as matrix processor 107 of FIG . 1 and 
507 of FIG . 5 , performs matrix processing on the input 
vectors . 
[ 0123 ] FIG . 9 is a block diagram illustrating an embodi 
ment of a microprocessor system for synchronizing variable 
latency memory access . For example , the microprocessor 
system of FIG . 9 includes a hardware arbiter for synchro 
nizing , in hardware , control operations and input operands 
retrieved from memory . The microprocessor system 900 
includes control unit 901 , control queue 903 , arbiter 905 , 
memory 907 , data formatter 911 , and computation engine 
915 . Arbiter 905 includes arbiter control logic 921 and read 
queue 923 . In various embodiments , the microprocessor 
system of FIG . 9 is a hardware only implementation for 
synchronizing variable latency memory access . In various 
embodiments , microprocessor system of FIG . 9 is part of the 
microprocessor system of FIGS . 1 and 5 . In some embodi 
ments , data formatter 911 is data formatter 605 of FIG . 6 . 
[ 0124 ] In various embodiments , the arrows of FIG . 9 
depict the general and / or primary direction control signals , 
operations , and / or data flow between the various compo 
nents when performing a machine learning processing . In 
some embodiments , communication may be bi - directional 
( not - shown ) where applicable . For example , data may be 
received by data formatter 911 from memory in response to 
an issued memory read request ( not shown in FIG . 9 ) from 
data formatter 911 . In some embodiments , the issued 
memory read request is requested by data formatter 911 via 
arbiter 905 . 
( 0125 ] In various embodiments , control unit 901 is com 
municatively connected to data formatter 911 and control 
queue 903 . In some embodiments , control unit 901 is 
communicatively connected to arbiter 905 , depicted as a 
dotted line . In various embodiments , control unit 901 sends 
a control operation corresponding to a computational array 
operation to be queued in control queue 903 . In various 
embodiments , control unit 901 sends a control signal to data 
formatter 911 . For example , control unit 901 may send a 
control signal to data formatter 911 describing arguments for 
formatting corresponding to the computational operation 
queued at control queue 903 . In some embodiments , control 
unit 901 sends a control signal to arbiter 905 that describes 
memory access operations corresponding to the queued 
computational operation . In other embodiments , data for 
matter 911 sends a control signal to arbiter 905 that describes 
memory access operations corresponding to the queued 
computational operation and the data to be formatted , for 
example , in response to a control signal received by control 
unit 901 . 
[ 0126 ] In various embodiments , control queue 903 is a 
queue for storing computational array operations . In various 
embodiments , control queue 903 is a first - in - first - out queue 
that receives computational array operations from control 
unit 901 and de - queues computational array operations to 
computation engine 915 . In various embodiments , the de 
queue operation is performed in response to a control signal , 
such as a ready signal , from arbiter 905 . For example , once 
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an arbiter grants memory access to a data operand corre 
sponding to the computational array operation queued at 
control queue 903 , control queue 903 de - queues the com 
putational array operation . In various embodiments , the 
dequeue action is timed so that the data operand retrieved 
from memory via arbiter 905 is synchronized to arrive at 
computation engine 915 with the computational array opera 
tion . In some embodiments , the ready signal from arbiter 
905 is based on a completed read corresponding to a read 
request . In some embodiments , a computational array opera 
tion queued at control queue 903 relies on more than one 
data operand . For example , a matrix multiplication may 
require more than one memory access operations . In some 
embodiments , in the event the computational array operation 
queued at control queue 903 relies on more than one data 
operand , the computational array operation is de - queued so 
that all the data operands are synchronized to arrive at 
computation engine 915 with the computational array opera 
tion . For example , in the event two memory access opera 
tions are required and arbiter 905 generates one control 
signal for each memory access , control queue 903 will only 
release the computational array operation once the second 
control signal is received . 
[ 0127 ] In some embodiments , control queue 903 includes 
additional stages to adjust for the latency required for data 
operands to be retrieved from memory 907 and formatted by 
data formatter 911 . For example , control queue 903 may 
include one or more flip - flops to propagate a computational 
array operation from control queue 903 to computation 
engine 915 . In some embodiments , alternative techniques 
are utilized to introduce a fixed latency from control queue 
903 to computation engine 915 that corresponds to the 
latency to load data operand by data formatter 911 . In 
various embodiments , the latency is a fixed number of clock 
cycles based on the amount of time required to perform a 
memory read and to format the retrieved data into operands 
for computation engine 915 . Although not depicted in FIG . 
9 , as an alternative , in some embodiments , control queue 
903 is included as part of control unit 901 . 
[ 0128 ] In various embodiments , the control signal 
received at control queue 903 initiate the release of a queued 
computational array operation may be received ( not shown ) 
from one or more data formatters , such as data formatter 
911 , in response to a control signal received at the data 
formatter from arbiter 905 . For example , instead of arbiter 
905 directly sending a ready control signal to control queue 
903 , the control signal is sent to data formatter 911 . In 
various embodiments , the control signal received at control 
queue 903 is received indirectly from arbiter 905 . 
[ 0129 ] In some embodiments , arbiter 905 is utilized to 
control access to memory 907 . In various embodiments , 
memory 907 has a limited number of read ports , for 
example , a single read port capable of only performing a 
single read at a time . As a result of a limited number of read 
ports , access to memory 907 must be limited . In various 
embodiments , arbiter 905 grants read access to read ports 
( not shown ) of memory 907 . In the example shown , arbiter 
905 includes arbiter control logic 921 for processing 
memory access request , such as receiving and queuing read 
requests , granting memory access to queued read requests , 
and coordinating memory access with computational array 
operations . In various embodiments , arbiter 905 is a hard 
ware arbiter . For example , arbiter 905 does not rely on 

software implementations to synchronize memory access 
with computational array operations . 
[ 0130 ] In the example shown , arbiter 905 includes read 
queue 923 for queuing memory read access requests . In 
various embodiments , memory access requests are read 
requests to memory , such as memory 907 . For example , a 
request to load data associated with a memory address of a 
matrix operand is a memory access request . In various 
embodiments , memory read requests are initiated by a data 
formatter such as data formatter 911 . In various embodi 
ments , one or more data formatters initiate memory access 
requests . For example , a hardware data formatter corre 
sponding to data , such as sensor data , and a separate 
hardware data formatter corresponding to weights , such as 
weights representing a machine learning model , initiate read 
access requests for memory . The various read requests are 
queued in read queue 923 and may originate from different 
components of microprocessor system 900 . In some 
embodiments , additional read queues may exist ( not shown ) , 
for example , corresponding to different requesters , different 
memory modules , different read ports , etc . In various 
embodiments , the memory read requests correspond to the 
issued memory reads performed at 711 of FIG . 7 and / or 809 
of FIG . 8 . 
[ 0131 ] In some embodiments , memory 907 is memory 
used for storing data operands for computation engine 915 . 
For example , memory 907 may be static random access 
memory ( SRAM ) . In various embodiments , memory 907 is 
high - density memory with limited read ports . For example , 
in order to increase the density of memory 907 , the number 
of read ports are limited . In some embodiments , memory 
907 includes a cache ( not shown ) . In various embodiments , 
memory 907 may be dynamically partitioned to allocate 
portions of memory between data and weights . In various 
embodiments , memory 907 may be dynamically partitioned 
to allocate portions of memory for different purposes . In 
some embodiments , memory 907 is memory 102 of FIG . 1 
and / or 601 of FIG . 6 . In some embodiments , memory 907 
includes a cache ( not shown ) to reduce latency . 
10132 ] In some embodiments , data formatter 911 is a 
hardware data formatter for preparing operands for a com 
putational engine , such as computation engine 915 . For 
example , data formatter 911 may initiate the loading of data 
operands from memory ( and / or cache ) and prepare the 
loaded operands as a group of values for input to a compu 
tation engine . In various embodiments , the length of time to 
load and format a data operand by data formatter 911 is a 
variable amount of time since the amount of time needed to 
read data from memory is variable . In some embodiments , 
the data formatter will issue a read request for data from 
memory and will stall a variable amount of time as the read 
request is pending access to memory . In various embodi 
ments , the amount of time to format and send an input 
operand to computation engine 915 is a fixed amount and 
only the amount of time required to read an operand from 
memory is variable . 
0133 ] In various embodiments , one or more data format 

ters prepare operands for a computation engine . For 
example , a hardware data formatter 911 may align the data 
retrieved from memory 907 into a format compatible with 
computation engine 915 . In some embodiments , hardware 
data formatter 911 inserts padding and / or applies a particular 
stride parameter to the retrieved data from memory 907 . In 
various embodiments , additional data formatters ( not 
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shown ) may exist and may be utilized to format additional 
operands for a computational array operation . For example , 
a hardware data formatter may exist for formatting data 
input and a separate hardware data formatter may exist for 
formatting weight input . In various embodiments , two or 
more separate hardware data formatter pipelines may exist 
in a microprocessor system ( not shown ) and arbiter 905 
arbitrates the memory requests issued by each hardware data 
formatter and synchronizes the granted memory read 
requests with control operations from control unit 901 . 
[ 0134 ] In some embodiments , computation engine 915 is 
a computational array for preforming computational array 
operations . For example , computation engine 915 receives 
input operands from one or more data formatters and per 
forms a matrix operation on the formatter operands . In 
various embodiments , computation engine 915 receives a 
computational operation from control queue 903 . For 
example , computation engine 915 may receive an operation 
corresponding to a convolution operation from control 
queue 903 . In some embodiments , the computation opera 
tion and the data operands must be synchronized and arrive 
at computation engine 915 for processing at the same clock 
cycle . In various embodiments , the output of computation 
engine 915 is fed into a vector processor ( not shown ) and / or 
post - processing processor ( not shown ) . In various embodi 
ments , computation engine 915 is matrix processor 107 of 
FIG . 1 . 
[ 0135 ] FIG . 10 is a flow diagram illustrating an embodi 
ment of a process for performing machine learning process 
ing . The process of FIG . 10 may be used to prepare 
computational array operands and perform a computational 
array operation on the formatted operands . By queuing 
control operations and synchronizing the release of the 
queued control operation with the formatted data operands , 
the throughput of a microprocessor system is increased and 
the amount of time spent stalled waiting for a variable access 
latency memory read to complete is reduced . In various 
embodiments , the process of FIG . 10 is performed by the 
microprocessor system of FIGS . 1 , 5 , 6 , and 9 to increase 
throughput and / or reduce power consumption when per 
forming computational operations . 
[ 0136 ] At 1001 , a read memory address is generated . In 
some embodiments , the memory address is generated by a 
data formatter . In various embodiments , the address is 
generated by a hardware data formatter such as data for 
matter 104 or weight formatter 106 of FIG . 1 . As another 
example , the address is generated by a hardware data 
formatter such as data formatter 605 or 911 of FIGS . 6 and 
9 , respectively . For example , a hardware data formatter 
generates an address corresponding to a matrix operand such 
as a two - dimensional region of an image for convolution . As 
explained in further detail above , in some embodiments , the 
step of 1001 is performed at 707 of FIG . 7 to generate a 
memory address corresponding to subset of values located 
consecutively in memory . 
[ 0137 ] At 1003 , a memory read is issued . For example , a 
memory read is issued for the data corresponding to the data 
address generated at 1001 . In various embodiments , the 
memory read request may be a read for a block of elements 
starting at an address corresponding to a first element of a 
subset of elements located consecutively in memory . 
[ 0138 ] At 1005 , a control operation is queued . For 
example , a control operation is queued in a control queue 
such as control queue 103 and 903 of FIGS . 1 and 9 , 

respectively . In various embodiments , the control operation 
corresponds to one or more operands of the memory address 
generated at 1001 and the control operation is queued so that 
it may be scheduled to arrive at a computational array in 
time with the operands . In various embodiments , a control 
operation corresponds to a computational array operation 
issued by a control unit of the microprocessor system such 
as control unit 101 and 901 of FIGS . 1 and 9 , respectively . 
[ 0139 ] At 1007 , a determination is made whether memory 
access is granted . For example , for each memory read 
request issued , access to memory must be first granted 
before a memory read can be performed . In some embodi 
ments , the memory has a limited number of read ports and 
thus a limited number of reads may be performed simulta 
neously . In some embodiments , the memory has a single 
read port and only one read can be performed at a time . In 
various embodiments , reads are queued up and issued by an 
arbiter , such as arbiter 123 and 905 of FIGS . 1 and 9 , 
respectively . Once a particular read is granted memory 
access , that read can retrieve the requested data from 
memory . In the event memory access is granted , processing 
continues to 1009 . In the event memory access is not 
granted , processing loops back to 1007 . In various embodi 
ments , a read issued at 1003 waits at 1007 until the read is 
granted access to memory and the memory read can be 
performed . By using an arbiter to grant memory access , the 
system is able to maintain synchronization between the 
control operations and data for operands . 
[ 0140 ] At 1009 , the control queue is signaled . In some 
embodiments , the signal is sent based on a determination 
that memory access is granted at 1007 . In various embodi 
ments , the signal is a ready signal corresponding to a 
memory access request . Once access to memory is granted , 
the latency to perform a memory read and / or to format the 
retrieved data can be determined . In various embodiments , 
the latency is a fixed amount of time . For example , in some 
embodiments , the latency to retrieve data from memory 
once memory access is granted and to format the received 
data as an operand is a fixed number of clock cycles . By 
determining , in advance the fixed number of clock cycles 
required to read and format a data operand , a computation 
operation queued in a control queue can be released and be 
configured to arrive at a computational array in sync with 
formatted data operands . 
10141 ] At 1011 , data is read from memory . In some 
embodiments , a block of data corresponding to a subset of 
elements located consecutively in memory is read . In vari 
ous embodiments , the read is the read issued at 1003 . 
[ 0142 ] In an alternative embodiment ( not shown ) , the 
control queue signaled at 1009 is signaled after the data is 
read from memory , effectively swapping the steps 1009 and 
1011 . For example , the data is read from memory and once 
the data is received at a hardware data formatter , the 
hardware data formatter signals a control queue . In some 
embodiments , the ready signal received at control queue is 
based on a completed memory read instead of a memory 
access grant ( as shown ) . 
[ 0143 ] At 1013 , data is formatted for computation . For 
example , data is retrieved from memory at 1011 and arrives 
at a hardware data formatter such as data formatter 104 or 
weight formatter 106 of FIG . 1 . As another example , hard 
ware data formatter may be data formatter 605 or 911 of 
FIGS . 6 and 9 , respectively . In various embodiments , a 
hardware data formatter formats the operands to arrive at a 
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computational array as a group of values . In some embodi 
ments , the values are formatted as described above , for 
example , with respect to FIGS . 3 and 6 , among others . In 
various embodiments , formatting includes aligning the data 
and / or formatting the data based on a stride and / or padding 
parameter . 
[ 0144 ] At 1015 , a computational array operation is per 
formed . For example , a matrix operation is performed by a 
computational array . As another example , a convolution 
operation is performed using a matrix processor . In some 
embodiments , vector processing and / or post - processing may 
be performed as well . In various embodiments , a group of 
values is made available from one or more hardware data 
formatters along with a computational array operation dur 
ing the same clock cycle . For example , a group of values is 
formatted by a hardware data formatter at 1013 and arrives 
at a computational array in sync with a computational 
operation via a control queue . The computation array per 
forms a computational operation as described by the com 
putational operation with the provided data operands . 
[ 0145 ] FIG . 11 is a flow diagram illustrating an embodi 
ment of a process for synchronizing memory access with a 
control operation . For example , the process of FIG . 11 may 
be performed by a memory access arbiter to synchronize the 
availability of data operands with a computational operation 
for a computational array when accessing variable latency 
memory . In some embodiments , the process of FIG . 11 may 
be used as part of the process for performing a computa 
tional array operation on the formatted operands . In various 
embodiments , the process of FIG . 11 is performed by the 
microprocessor system of FIGS . 1 , 5 , 6 , and 9 . In some 
embodiments , the process of FIG . 11 is performed by an 
arbiter such as arbiter 105 and 905 of FIGS . 1 and 9 , 
respectively . In various embodiments , the arbiter is a hard 
ware arbiter that synchronizes the arrival of operand data 
and a computational operation . For example , a hardware 
arbiter is synchronized based on clock cycles . Unlike a 
software implementation , the arbiter is configured in hard 
ware to signal a control queue to release a computational 
operation corresponding to data associated with a granted 
memory access . By implementing the arbiter using signaling 
hardware , the throughput of computational operations is 
increased and the power consumption is reduced . In various 
embodiments , the corresponding microprocessor system can 
operate at a higher clock speed . 
[ 0146 ] At 1101 , a read request is received by a hardware 
arbiter . In various embodiments , the read request is a 
memory read request . For example , a read request may be a 
memory read request corresponding to one or more elements 
in memory . As another example , the read request corre 
sponds to a subset of elements located consecutively in 
memory . In various embodiments , a read request may arrive 
from one or more different hardware data formatters . For 
example , a read request may arrive from either a data or a 
weight data formatter to read data corresponding to data or 
weights . In some embodiments , a read request is issued by 
data formatter 104 and / or weight formatter 106 of FIG . 1 . In 
some embodiments , the read request is issued by data 
formatter 911 of FIG . 9 . 
[ 0147 ] At 1103 , the read request received at 1101 is 
queued . In various embodiments , read requests issued from 
different sources are queued in a single queue . For example , 
a request from a data hardware data formatter and a weight 
hardware data formatter are queued in the same queue and 

arranged based on arrival time . In some embodiments , one 
or more queues exist . For example , in some embodiments , 
more than one queue exists and queues exist corresponding 
to the hardware data formatter requesting the memory read . 
For example , a separate queue exists for data requests and 
for weight requests . In various embodiments , having sepa 
rate queues allows the arbiter to prioritize requests from one 
queue over another queue , direct requests to different 
memory read ports , direct requests to different memory 
regions , etc . In some embodiments , a single queue is used to 
implement similar functionality by storing metadata associ 
ated with the source of the read request . 
[ 0148 ] At 1105 , a determination is made on whether 
memory access is granted . For example , the pending ele 
ment of a read queue is examined and determined whether 
to grant memory access to perform the memory read corre 
sponding to the elements . In some embodiments , a deter 
mination is made whether an existing memory read is being 
performed and / or whether an existing memory read has 
completed . In various embodiments , at step 1105 , a deter 
mination is made whether memory may be accessed based 
on the availability of read ports of the memory . 
[ 0149 ] At 1107 , in the event the memory is available to 
service a memory read , processing proceeds to 1109 . In the 
event the memory is not available to service a memory , 
processing loops back to 1105 to determine the appropriate 
time to grant access to read memory for a particular read 
request . 
[ 0150 ] At 1109 , a read request is dequeued from the read 
queue . In various embodiments , the read request corre 
sponds to a read request queued at 1103 . For example , one 
or more read requests are queued in a read queue at 1103 and 
the first arrived request is dequeued at 1109 . The first arrived 
request corresponds to the request that arrived the earliest . In 
some embodiments , the request with the highest priority is 
dequeued and may not correspond to the request that arrived 
the earliest . In some embodiments , the request is a memory 
request for a subset of elements located consecutively in 
memory . In various embodiments , once a read request is 
dequeued , the read corresponding to the request is per 
formed to retrieve the data requested from memory . 
[ 0151 ] At 1111 , a ready signal is sent to a control queue 
corresponding to the read request dequeued at 1109 . In some 
embodiments , the ready signal is sent once the read has 
completed . In some embodiments , the ready signal is sent 
when the read request is dequeued . In various embodiments , 
the latency used to synchronize a control operation with one 
or more data reads is based on the amount of time ( e . g . , 
clock cycles ) it takes for the data to be formatted and 
provided to the computational array . For example , the read 
request dequeued at 1109 corresponds to a computational 
operation queued at a control queue . At 1111 , the control 
queue receives a signal from the arbiter that informs the 
control queue that memory access has been granted for the 
data associated with a queued computational operation . In 
various embodiments , once memory access is granted , the 
data is available in a fixed number of clock cycles . In various 
embodiments , the signal sent from the arbiter to the control 
queue informs the control queue to make the corresponding 
computational operation available after the determined fixed 
number of clock cycles . As described above and with respect 
to FIG . 12 , in some embodiments , the control queue is 
triggered to dequeue a control operation based on one or 
more memory reads . For example , some computational 
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operations require performing more than one memory read 
and the computational operation is dequeued based on 
memory access being granted for the final memory read . 
[ 0152 ] FIG . 12 is a flow diagram illustrating an embodi 
ment of a process for synchronizing memory access with a 
control operation . For example , the process of FIG . 12 may 
be used to perform matrix operations on data , such as sensor 
data , using weights , such as weights trained based on a 
machine learning model , where the data and / or weights are 
retrieved from memory with variable access times . In some 
embodiments , the process of FIG . 12 is utilized by a 
microprocessor system such as the microprocessor system of 
FIG . 1 with different pipelines for retrieving weights and 
data . The process of FIG . 12 may be used to synchronize the 
arrival of a control operation , input data , and input weights 
at a computational array when accessing variable latency 
memory using a hardware arbiter . In some embodiments , the 
process of FIG . 12 may be used as part of the process for 
performing a computational array operation on the formatted 
operands retrieved from memory . In various embodiments , 
the process of FIG . 12 is performed by the microprocessor 
system of FIGS . 1 , 5 , 6 , and 9 . In some embodiments , the 
process of FIG . 12 is performed by an arbiter such as arbiter 
105 and 905 of FIGS . 1 and 9 , respectively . In various 
embodiments , the arbiter is a hardware arbiter that synchro 
nizes the arrival of data and operations . 
[ 0153 ] At 1201 , initialization is performed on the control 
operation and the memory reads . For example , a control 
operation is initialed using a computational operation and 
prepared to be issued . As another example , the initialization 
includes calculating one or more memory addresses corre 
sponding to data operands for a computational array and 
issuing the corresponding memory read requests . In some 
embodiments , the step of 1201 may be performed by a 
control unit and / or a hardware data formatter . Examples of 
a control unit include control unit 101 and 901 of FIGS . 1 
and 9 , respectively . Examples of a hardware data formatter 
include data formatter 104 of FIG . 1 , weight formatter 106 
of FIG . 1 , data formatter 504 of FIG . 5 , weight formatter 506 
of FIG . 5 , and data formatter 911 of FIG . 9 . 
[ 0154 ] At 1211 , a memory read corresponding to one or 
more data operands is queued at an arbiter . For example , a 
memory read corresponding to a sensor data , such as data 
from a camera , is queued . In some embodiments , the data 
corresponds to an input channel of sensor data . In some 
embodiments , the memory read is queued at an arbiter such 
as arbiter 105 and 905 of FIGS . 1 and 9 , respectively . In 
some embodiments , the memory read is queued in a read 
queue such as read queue 923 of FIG . 9 . 
[ 0155 ] At 1221 , a memory read corresponding to one or 
more weight operands is queued at an arbiter . For example , 
a memory read corresponding to weight data is queued . In 
some embodiments , the weight operands are a two - dimen 
sional image filter . In some embodiments , the weight oper 
ands are machine learning weights determined by training a 
machine learning model . In some embodiments , the memory 
read is queued at an arbiter such as arbiter 105 and 905 of 
FIGS . 1 and 9 , respectively . In some embodiments , the 
memory read is queued in a read queue such as read queue 
923 of FIG . 9 . 
[ 0156 ] At 1231 , a control operation is queued . For 
example , a control operation corresponding to a convolution 
computational array operation is queued . As another 
example , a control operation corresponding to a matrix 

operation is queued . In various embodiments , the control 
operation is queued in a control queue such as control queue 
103 and 903 of FIGS . 1 and 9 , respectively . In various 
embodiments , the control operation describes a computa 
tional operation to be performed by a computational array . 
101571 . At 1213 , in the event access to memory is granted 
for a queued data read , processing proceeds to 1215 . In the 
event access is not granted , processing loops back to 1213 
until a later time when memory access is granted . At 1213 , 
once memory access is granted , a data read is dequeued and 
the memory read for the corresponding data is performed . 
[ 0158 ] At 1223 , in the event access to memory is granted 
for a queued weight read , processing proceeds to 1225 . In 
the event access is not granted , processing loops back to 
1223 until a later time when memory access is granted . At 
1223 , once memory access is granted , a weight read is 
dequeued and the memory read for the corresponding weight 
is performed . 
[ 0159 ] At 1215 , a signal , such as a ready signal , is sent to 
the control queue to indicate that memory access has been 
granted for a data read and that the data element ( s ) will be 
read from memory . In various embodiments , the number of 
clock cycles to read data element ( s ) is fixed and the signal 
is used by the control queue to determine the appropriate 
timing for dequeueing the corresponding control operation 
for the data element ( s ) being read . In various embodiments , 
the signal is sent from the hardware arbiter that grants access 
for the memory read . In some embodiments , the memory 
read may be serviced from a cache ( not shown ) . In some 
embodiments , the signal is sent once a memory read has 
completed and the data has been retrieved from memory . 
[ 0160 ] At 1225 , a signal , such as a ready signal , is sent to 
the control queue to indicate that memory access has been 
granted for a weight read and that the weight element ( s ) will 
be read from memory . In various embodiments , the number 
of clock cycles to read the weight element ( s ) is fixed and the 
signal is used by the control queue to determine the appro 
priate timing for dequeueing the corresponding control 
operation for the weight element ( s ) being read . In various 
embodiments , similar to 1213 , the signal is sent from the 
hardware arbiter that grants access for the memory read . In 
some embodiments , the memory read may be serviced from 
a cache ( not shown ) . In some embodiments , the signal is sent 
once a memory read has completed and the weight data has 
been retrieved from memory . 
10161 ] At 1235 , a control queue receives one or more 
control signals from an arbiter . For example , a control queue 
receives a ready signal corresponding to a data read being 
granted access to read from memory . As another example , a 
control queue receives a ready signal corresponding to a 
weight read being granted access to read from memory . In 
various embodiments , the signals are not received at the 
same time or during the same clock cycle . For example , a 
memory that services a single memory read at a time will 
require the first read to complete before a second read can be 
performed . In some embodiments , at 1235 , the control 
queue waits to receive a signal corresponding to each 
memory read issued and / or acknowledging that each of the 
operands has been read from memory ( or a cache of the 
memory ) . In various embodiments , only once signals have 
been received for each of the corresponding memory reads 
of a control operation does processing proceeds to 1239 . 
( 0162 ] At 1217 , a read is dequeued and the corresponding 
data element ( s ) are retrieved from memory . In various 
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embodiments , the read corresponds to the next data read in 
a read queue . In some embodiments , the next read to be 
dequeued corresponds to the data read that arrives first . For 
example , the next read is based on the time the data read is 
queued in the read queue . In some embodiments , the next 
read is based on the data read with the highest priority . 
[ 0163 ] At 1227 , a read is dequeued and the corresponding 
weight element ( s ) are retrieved from memory . In various 
embodiments , the read corresponds to the next weight read 
in a read queue . In some embodiments , the next read to be 
dequeued corresponds to the weight read that arrives first . 
For example , the next read is based on the time the weight 
read is queued in the read queue . In some embodiments , the 
next read is based on the weight read with the highest 
priority . 
[ 0164 ] At 1219 , the data element ( s ) retrieved from 
memory are formatted for a computational array . For 
example , the one or more data elements retrieved from 
memory are formatted by a hardware data formatter into a 
group of values to be provided together to and operated on 
by a computational array . For example , formatting may 
include formatting data arguments as a group of values that 
make up a portion of a two - dimensional region of sensor 
data and providing the group of values together to a com 
putational array . In some embodiments , formatting includes 
formatting the data arguments based on a stride parameter . 
In some embodiments , formatting includes formatting the 
data arguments based on a padding parameter . In various 
embodiments , formatted may be performed by a hardware 
data formatter such as data formatter 104 of FIG . 1 . 
[ 0165 ] At 1229 , the weight element ( s ) retrieved from 
memory are formatted for a computational array . For 
example , the one or more weight elements retrieved from 
memory are formatted by a hardware data formatter into a 
group of values to be provided together to and operated on 
by a computational array . For example , formatting may 
include formatting weight arguments as a group of values 
that make up an image filter and providing the group of 
values together to a computational array . In some embodi 
ments , formatting includes formatting the weight arguments 
based on a parameter such as a matrix dimension , stride , 
padding , etc . , as appropriate . In various embodiments , for 
matted may be performed by a hardware data formatter such 
as weight formatter 106 of FIG . 1 . 
[ 0166 ] At 1239 , a control operation is dequeued and 
provided to a computational array . For example , a control 
operation corresponding to a computational array operation 
to be performed on matrix operands is dequeued from a read 
queue and provided to a computational array in sync with 
providing operands to the computational array . In some 
embodiments , a control operation corresponds to a matrix 
operation . In some embodiments , a control operation corre 
sponds to performing a convolution operation . In various 
embodiments , the control operation is queued in a control 
queue and is only dequeued when all associated operands 
are retrieved or being retrieved from memory once memory 
access is granted . For example , a control operation associ 
ated with two groups of operands is dequeued from a control 
queue only after a first group of operands has already been 
retrieved and / or is being streamed from memory ( or cache ) 
and when a memory read associated with a second group of 
operands is granted access to memory . The latency to 
retrieve and format the second group of operands is a fixed 
number of clock cycles and the control operation is 

dequeued and provided to a computational array at the same 
clock cycle as the different groups of operands . 
f0167 ] At 1251 , a computational operation is performed 
by a computational array . In various embodiments , a control 
operation corresponding to a computational array operation 
and the operands retrieved from memory are available at the 
computational array at the same clock cycle . A computa 
tional operation is performed on the computational array 
operands made available to the computational array . In some 
embodiments , the computation ( s ) performed at 1251 corre 
spond to the computation ( s ) performed at 309 of FIG . 3 , 713 
of FIG . 7 , 815 of FIG . 8 , and / or 1015 of FIG . 10 . 
[ 0168 ] In various embodiments , the process of FIG . 12 is 
performed in hardware using hardware solutions such as 
control signals , flip - flops , registers , and other appropriate 
techniques . Unlike a software implementation , various hard 
ware embodiments of FIG . 12 utilize a clock signal to 
synchronize the arrival of operands and the control operation 
to a computational array . In various embodiments , once a 
control operation is dequeued , a fixed pipeline is utilized for 
presenting a control operation to a computation array . The 
fixed pipeline from the control queue to the computational 
array is matched to the fixed latency ( e . g . , number of clock 
cycles ) to retrieve data from memory once access is granted 
by a hardware arbiter and the fixed latency to format the data 
for a computational array . In some embodiments , the fixed 
pipeline is based only on the fixed latency after data have 
been read from memory . In various embodiments , the com 
putational operation and operand ( s ) are synchronized in a 
manner that provides for higher throughput and reduced 
power consumption . In some embodiments , the process of 
FIG . 12 allows for computational operations to be per 
formed at a higher clock speed . 
[ 0169 ] Although the foregoing embodiments have been 
described in some detail for purposes of clarity of under 
standing , the invention is not limited to the details provided . 
There are many alternative ways of implementing the inven 
tion . The disclosed embodiments are illustrative and not 
restrictive . 
What is claimed is : 
1 . A microprocessor system , comprising : 
a computational array that includes a plurality of compu 

tation units , wherein each of the plurality of computa 
tion units operates on a corresponding value addressed 
from memory ; and 

a hardware arbiter . 
2 . The system of claim 1 , wherein the hardware arbiter is 

configured to control issuing of at least one memory request 
for one or more of the corresponding values addressed from 
the memory for the computation units and to schedule a 
control signal to be issued based on the issuing of the at least 
one memory request . 

3 . The system of claim 1 , wherein the computational array 
is configured to receive at least two vector input operands . 

4 . The system of claim 1 , wherein each computation unit 
of the plurality of computation units is configured to perform 
at least a portion of a dot - product component operation . 

5 . The system of claim 1 , wherein each computation unit 
of the plurality of computation is units includes an arithme 
tic logic unit , an accumulator , and a shadow register . 

6 . The system of claim 1 , wherein the corresponding value 
addressed from memory corresponds to an input channel of 
sensor data . 
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7 . The system of claim 1 , wherein the corresponding value 
addressed from memory of at least one of the plurality of 
computation units corresponds to a convolution value of a 
convolution filter . 

8 . The system of claim 2 , wherein the control signal is 
received by a control queue of the microprocessor system . 

9 . The system of claim 2 , wherein the control signal is 
received by a control unit of the microprocessor system . 

10 . The system of claim 2 , wherein the control signal 
triggers an operation of the computation units . 

11 . The system of claim 2 , wherein the control signal 
initiates a release of a computational array operation . 

12 . The system of claim 11 , wherein the release of the 
computational array operation corresponds to a dequeuing of 
a control operation from a control queue . 

13 . The system of claim 11 , wherein the computational 
array operation includes a convolution operation . 

14 . The system of claim 11 , wherein the computational 
array operation is performed in identifying features of an 
input data . 

15 . The system of claim 2 , wherein the hardware arbiter 
queues the memory requests in a read queue of the micro 
processor system . 

16 . The system of claim 1 , wherein the memory is 
configured to dynamically adjust an allocation between a 
first portion of the memory for a data input and a second 
portion of the memory for a weight input . 

17 . The method comprising : 
receiving an instruction for a hardware computational 

array , wherein the hardware is computational array 
includes a plurality of computation units , and each of 
the plurality of computation units operates on a corre 
sponding value addressed from memory ; and 

queuing a memory request associated with the instruction 
at a hardware arbiter , wherein the hardware arbiter is 
configured to control issuing of at least one memory 

request and to schedule a control signal to be issued 
based on the issuing of the at least one memory request , 
and the at least one memory request is for one or more 
of the corresponding values addressed from the 
memory for the computation units . 

18 . The method of claim 17 , wherein the instruction 
specifies at least a component of a matrix operation . 

19 . The method of claim 17 , wherein the memory request 
is a variable latency memory request . 

20 . A microprocessor system , comprising : 
a computational array that includes a plurality of compu 

tation units , wherein each of the plurality of computa 
tion units operates on a corresponding value addressed 
from memory and the corresponding values addressed 
from the memory are synchronously provided together 
to the computational array as a group of values to be 
processed in parallel ; 

a hardware arbiter configured to control issuing of at least 
one memory request for one or more of the correspond 
ing values addressed from the memory for the compu 
tation units and to schedule a control signal to be issued 
based on the issuing of the at least one memory request ; 
and 

a hardware data formatter configured to gather the group 
of values , wherein the group of values includes a first 
subset of values located consecutively in the memory 
and a second subset of values located consecutively in 
the memory , and the first subset of values is not 
required to be located consecutively in the memory 
from the second subset of values . 

21 . The system of claim 20 , wherein the at least one 
memory request is a variable latency memory request . 

* * * * * 


