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A microprocessor system comprises a computational array 
and a vector computational unit . The computational array 
includes a plurality of computation units . The vector com 
putational unit is in communication with the computational 
array and includes a plurality of processing elements . The 
processing elements are configured to receive output data 
elements from the computational array and process in par 
allel the received output data elements . 
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VECTOR COMPUTATIONAL UNIT 
CROSS REFERENCE TO OTHER 

APPLICATIONS 

[ 0001 ] This application claims priority to U . S . Provisional 
Patent Application No . 62 / 625 , 251 entitled VECTOR COM 
PUTATIONAL UNIT filed Feb . 1 , 2018 , and claims priority 
to U . S . Provisional Patent Application No . 62 / 536 , 399 
entitled ACCELERATED MATHEMATICAL ENGINE 
filed Jul . 24 , 2017 , and is a continuation - in - part of co 
pending U . S . patent application Ser . No . 15 / 710 , 433 entitled 
ACCELERATED MATHEMATICAL ENGINE filed Sep . 
20 , 2017 , which claims priority to U . S . Provisional Patent 
Application No . 62 / 536 , 399 entitled ACCELERATED 
MATHEMATICAL ENGINE filed Jul . 24 , 2017 , all of 
which are incorporated herein by reference for all purposes . 

[ 0007 ] FIG . 4A is a block diagram illustrating an embodi 
ment of a vector computational unit for performing machine 
learning processing . 
[ 0008 ] FIG . 4B is a table illustrating an exemplary aliasing 
of vector registers . 
[ 0009 ] FIG . 5 is a flow diagram illustrating an embodi 
ment of a process for determining processor instructions for 
a microprocessor system . 
[ 0010 ] FIG . 6A is a flow diagram illustrating an embodi 
ment of a process for the running execution of a vector 
computational unit . 
0011 ] FIG . 6B is a flow diagram illustrating an embodi 

ment of a process for processing vector data by a vector 
computational unit . 
[ 0012 ] . FIG . 7 is a block diagram illustrating an embodi 
ment of an encoding format for a vector computational unit 
instruction . 
[ 0013 ] FIG . 8 is a flow diagram illustrating an embodi 
ment of a process for performing a single vector computa 
tional unit instruction by a vector computational unit . 
[ 0014 ] FIG . 9 is a diagram illustrating an exemplary 
instruction cycle of a vector computational unit . 
[ 0015 ] FIG . 10 is a block diagram illustrating an embodi 
ment of a computation unit of a computational array . 

BACKGROUND OF THE INVENTION 
[ 0002 ] Processing for machine learning and artificial intel 
ligence typically requires performing mathematical opera 
tions on large sets of data and often involves solving 
multiple convolution layers and pooling layers . Machine 
learning and artificial intelligence techniques typically uti 
lize matrix operations and non - linear functions such as 
activation functions . Applications of machine learning 
include self - driving and driver - assisted automobiles . In 
some scenarios , computer processors are utilized to perform 
machine learning training and inference . Traditional com 
puter processors are able to perform a single mathematical 
operation very quickly but typically can only operate on a 
limited amount of data simultaneously . As an alternative , 
graphical processing units ( GPUs ) may be utilized and are 
capable of performing the same mathematical operations but 
on a larger set of data in parallel . By utilizing multiple 
processor cores , GPUs may perform multiple tasks in par 
allel and are typically capable of completing large graphics 
processing tasks that utilized parallelism faster than a tra 
ditional computer processor . However , neither GPUs nor 
traditional computer processors were originally designed for 
machine learning or artificial intelligence operations . 
Machine learning and artificial intelligence operations often 
rely on the repeated application of a set of specific machine 
learning processor operations over very large datasets . 
Therefore , there exists a need for a microprocessor system 
that supports performing machine learning and artificial 
intelligence specific processing operations on large datasets 
in parallel without the overhead of multiple processing cores 
for each parallel operation . 

DETAILED DESCRIPTION 
[ 0016 ] The invention can be implemented in numerous 
ways , including as a process ; an apparatus ; a system ; a 
composition of matter ; a computer program product embod 
ied on a computer readable storage medium ; and / or a 
processor , such as a processor configured to execute instruc 
tions stored on and / or provided by a memory coupled to the 
processor . In this specification , these implementations , or 
any other form that the invention may take , may be referred 
to as techniques . In general , the order of the steps of 
disclosed processes may be altered within the scope of the 
invention . Unless stated otherwise , a component such as a 
processor or a memory described as being configured to 
perform a task may be implemented as a general component 
that is temporarily configured to perform the task at a given 
time or a specific component that is manufactured to per 
form the task . As used herein , the term “ processor ' refers to 
one or more devices , circuits , and / or processing cores con 
figured to process data , such as computer program instruc 
tions . 

BRIEF DESCRIPTION OF THE DRAWINGS 
0003 ] Various embodiments of the invention are dis 
closed in the following detailed description and the accom 
panying drawings . 
[ 0004 ] FIG . 1 is a block diagram illustrating an embodi 
ment of a microprocessor system for performing machine 
learning processing . 
[ 0005 ) FIG . 2 is a block diagram illustrating an embodi 
ment of a microprocessor system for performing machine 
learning processing . 
[ 0006 ] FIG . 3 is a block diagram illustrating an embodi 
ment of a microprocessor system for performing machine 
learning processing . 

[ 00171 A detailed description of one or more embodiments 
of the invention is provided below along with accompanying 
figures that illustrate the principles of the invention . The 
invention is described in connection with such embodi 
ments , but the invention is not limited to any embodiment . 
The scope of the invention is limited only by the claims and 
the invention encompasses numerous alternatives , modifi 
cations and equivalents . Numerous specific details are set 
forth in the following description in order to provide a 
thorough understanding of the invention . These details are 
provided for the purpose of example and the invention may 
be practiced according to the claims without some or all of 
these specific details . For the purpose of clarity , technical 
material that is known in the technical fields related to the 
invention has not been described in detail so that the 
invention is not unnecessarily obscured . 
[ 0018 ] A microprocessor system utilizing a vector com 
putational unit and a vector computational unit instruction 
set architecture is disclosed . For example , a microprocessor 
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system includes a computational array in communication 
with a vector computational unit . In various embodiments , a 
computational array is a matrix processor capable of per 
forming arithmetic operations on two input vectors and 
includes a plurality of computation units to receive the M 
operands and N operands from the input vectors . In some 
embodiments , the computation units are sub - circuits that 
include an arithmetic logic unit , an accumulator , and a 
shadow register for performing operations such as generat 
ing dot - products and performing various processing for 
convolution . Unlike conventional graphical processing unit 
( GPU ) or central processing unit ( CPU ) processing cores , 
where each core is configured to receive its own unique 
processing instruction , the computation units of the compu 
tational array each perform the same computation in parallel 
in response to an individual instruction received by the 
computational array . In various embodiments , the vector 
computational unit includes a plurality of processing ele 
ments for performing load , arithmetic , and store operations 
on a vector of input data in parallel . The processing elements 
of the vector computational unit are configured to receive an 
output from the computational array . In various embodi 
ments , the output of the computational array and the input 
into the vector computational unit is an array of data . The 
received input to the vector computational unit is processed 
in parallel in response to a single processor instruction . 
Similar to the computational array , the processing elements 
of the vector computational unit each perform the same 
computation in parallel in response to an individual instruc 
tion received by the vector computational unit . In some 
embodiments , the microprocessor system further includes a 
control unit configured to provide instructions to the vector 
computational unit . Each single processor instruction may 
specify a plurality of component instructions to be executed 
by the vector computational unit . In response to a single 
instruction , each of the plurality of processing elements of 
the vector computational unit processes different data ele 
ments of the vector input in parallel with the other process 
ing elements . In some embodiments , the output of the vector 
computational unit is fed into a post - processing unit for 
performing post - processing such as pooling operations . 
[ 0019 ] In some embodiments , a microprocessor system 
comprises at least a computational array and a vector 
computational unit . For example , a computational array is 
communicatively connected to a vector computational unit 
such that the output of the computational array is fed as input 
to the vector computational unit . In various embodiments , 
the computational array includes a plurality of computation 
units . For example , the computation units may be sub 
circuits of a matrix processor that include the functionality 
for performing one or more multiply , add , and shift opera 
tions . As another example , computation units may be sub 
circuits that include the functionality for performing a 
dot - product operation . In various embodiments , the compu 
tational array includes a sufficient number of computation 
units for performing multiple operations on the data inputs 
in parallel . For example , a computational array configured to 
receive M operands and N operands may include at least 
MXN computation units . In various embodiments , the 
microprocessor system further comprises a control unit for 
coordinating processing between the computational array 
and a vector computational unit . For example , the control 
unit may coordinate data from memory to be fed into the 
computational array , data from the computational array to be 

fed into the vector computational unit , and / or data from the 
vector computational unit to be stored in memory or fed into 
a post - processing unit . In some embodiments , the control 
unit is configured to provide computational array instruc 
tions to the computational array , vector computational unit 
instructions to the vector computational unit , and / or post 
processing instructions to a post - processing unit . 
[ 0020 ] In some embodiments , the vector computational 
unit in communication with the computational array 
includes a plurality of processing elements configured to 
receive as input the output data elements from the compu 
tational array . For example , a vector computational unit , 
such as a vector engine , receives as input a vector for 
processing . The vector computational unit may include a 
processing element for each element of the input vector . An 
example vector computational unit configured to receive a 
vector of N elements ( or operands ) may include N process 
ing elements for processing the N elements in parallel . In 
various embodiments , the processing elements are config 
ured to receive output data elements from the computational 
array . For example , the output from the computational array 
may be a vector of data elements that are fed to be received 
by the processing elements of the vector computational unit . 
In various embodiments , each vector computational unit 
processes in parallel the received output data elements from 
the computational array in response to a single processor 
instruction . For example , a single processor instruction is 
applied to each of the processing elements of the vector 
computational unit to be performed on the corresponding 
data element . 
[ 0021 ] In some embodiments , a control unit is configured 
to provide at least a single processor instruction to the vector 
computational unit . The single processor instruction speci 
fies a plurality of component instructions to be executed by 
the vector computational unit ( e . g . , in response to the single 
processor instruction ) . For example , a control unit provides 
to the vector computational unit a single vector instruction , 
such as an instruction triad , that includes multiple compo 
nent instructions . In some embodiments , an instruction triad 
is a simple processor instruction that includes up to three 
component instructions , such as a separate load instruction , 
arithmetic logic unit ( ALU ) instruction , and store instruc 
tion . The three component instructions are received and 
executed by the vector computational unit ( e . g . , in response 
to the instruction triad ) . For example , a vector computational 
unit receiving an instruction triad that bundles a load instruc 
tion , an ALU instruction , and a store instruction executes the 
load instruction , the arithmetic instruction , and the store 
instruction . In various embodiments , in response to the 
single processor instruction , the plurality of processing 
elements of the vector computational unit are configured to 
process different data elements in parallel with other pro 
cessing elements . For example , each processing element is 
capable of processing in parallel a different data element 
from the input vector to the vector computational unit . As 
another example , each of the component instructions of a 
single vector processor instruction triad may be applied to 
each of the elements of a vector input to complete the 
processing of an entire input vector of N elements in parallel 
using the vector computational unit . 
[ 0022 ] FIG . 1 is a block diagram illustrating an embodi 
ment of a microprocessor system for performing machine 
learning processing . In the example shown , microprocessor 
system 100 includes control unit 101 , data input 103 , weight 
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input 105 , matrix processor 107 , vector engine 111 , and 
post - processing unit 115 . Data input 103 and weight input 
105 are input modules for preparing data for matrix proces 
sor 107 . In some embodiments , data input 103 and weight 
input 105 each include an input data formatter , a cache or 
buffer , and / or a logic circuit for preparing data for matrix 
processor 107 . For example , data input 103 may prepare N 
operands from a two - dimensional array corresponding to 
image data and weight input 105 may prepare M operands 
corresponding to a vector of weight values to be processed 
by matrix processor 107 . In some embodiments , the process 
of FIG . 5 is performed to prepare instructions for operating 
on microprocessor system 100 , including matrix processor 
instructions for matrix processor 107 and vector engine 
instructions for vector engine 111 . In some embodiments , 
microprocessor system 100 , including vector engine 111 , 
performs the processes described below with respect to 
FIGS . 6A , 6B , and 8 . 
[ 0023 ] In some embodiments , matrix processor 107 is a 
computational array that includes a plurality of computation 
units . For example , a matrix processor receiving Moperands 
and N operands from weight input 105 and data input 103 , 
respectively , includes MxN computation units . In the figure 
shown , the small squares inside matrix processor 107 depict 
that matrix processor 107 includes a logical two - dimen 
sional array of computation units . Computation unit 109 is 
one of a plurality of computation units of matrix processor 
107 . In some embodiments , each computation unit is con 
figured to receive one operand from data input 103 and one 
operand from weight input 105 . In some embodiments , the 
computation units are configured according to a logical 
two - dimensional array but the matrix processor is not nec 
essarily fabricated with computation units laid out as a 
physical two - dimensional array . For example , the i - th oper 
and of data input 103 and the j - th operand of weight input 
105 are configured to be processed by the i - thxj - th compu 
tation unit of matrix processor 107 . 
[ 0024 ] In various embodiments , the data width of compo 
nents data input 103 , weight input 105 , matrix processor 
107 , vector engine 111 , and post - processing unit 115 are 
wide data widths and include the ability to transfer more 
than one operand in parallel . In some embodiments , data 
input 103 and weight input 105 are each 96 - bytes wide . In 
some embodiments , data input 103 is 192 - bytes wide and 
weight input 105 is 96 - bytes wide . In various embodiments , 
the width of data input 103 and weight input 105 is dynami 
cally configurable . For example , data input 103 may be 
dynamically configured to 96 or 192 bytes and weight input 
105 may be dynamically configured to 96 or 48 bytes . In 
some embodiments , the dynamic configuration is controlled 
by control unit 101 . In various embodiments , a data width of 
96 bytes allows 96 operands to be processed in parallel . For 
example , in an embodiment with data input 103 configured 
to be 96 - bytes wide , data input 103 can transfer 96 operands 
to matrix processor 107 in parallel . 
[ 0025 ] In various embodiments , matrix processor 107 is 
configured to receive N bytes from data input 103 and M 
bytes from weight input 105 and includes at least MxN 
computation units . For example , matrix processor 107 may 
be configured to receive 96 bytes from data input 103 and 96 
bytes from weight input 105 and includes at least 96x96 
computation units . As another example , matrix processor 
107 may be configured to receive 192 bytes from data input 
103 and 48 bytes from weight input 105 and includes at least 

192x48 computation units . In various embodiments , the 
dimensions of matrix processor 107 may be dynamically 
configured . For example , the default dimensions of matrix 
processor 107 may be configured to receive 96 bytes from 
data input 103 and 96 bytes from weight input 105 but the 
input dimensions may be dynamically configured to 192 
bytes and 48 bytes , respectively . In various embodiments , 
the output size of each computation unit is equal to or larger 
than the input size . For example , in some embodiments , the 
input to each computation unit is two 1 - byte operands , one 
corresponding to an operand from data input 103 and one 
from weight input 105 , and the output of processing the two 
operands is a 4 - byte result . As another example , matrix 
processor 107 may be configured to receive 96 bytes from 
data input 103 and 96 bytes from weight input 105 and 
output 96 4 - byte results . In some embodiments , the output of 
matrix processor 107 is a vector . For example , a matrix 
processor configured to receive two 96 - wide input vectors , 
where each element ( or operand ) of the input vector is one 
byte in size , can output a 96 - wide vector result where each 
element of the vector result is 4 - bytes in size . 
[ 0026 ] In various embodiments , each computation unit of 
matrix processor 107 is a sub - circuit that includes an arith 
metic logic unit , an accumulator , and a shadow register . In 
the example shown , the computation units of matrix pro 
cessor 107 can perform an arithmetic operation on the M 
operands and N operands from weight input 105 and data 
input 103 , respectively . In various embodiments , each com 
putation unit is configured to perform one or more multiply , 
add , accumulate , and / or shift operations . In some embodi 
ments , each computation unit is configured to perform a 
dot - product operation . For example , in some embodiments , 
a computation unit may perform multiple dot - product com 
ponent operations to calculate a dot - product result . For 
example , the array of computation units of matrix processor 
107 may be utilized to perform convolution steps required 
for performing inference using a machine learning model . A 
two - dimensional data set , such as an image , may be format 
ted and fed into matrix processor 107 using data input 103 , 
one vector at a time . In parallel , a vector of weights may be 
applied to the two - dimensional data set by formatting the 
weights and feeding them as a vector into matrix processor 
107 using weight input 105 . Corresponding computation 
units of matrix processor 107 perform a matrix processor 
instruction on the corresponding operands of the weight and 
data inputs in parallel . 
[ 0027 ] In some embodiments , vector engine 111 is a 
vector computational unit that is communicatively coupled 
to matrix processor 107 . Vector engine 111 includes a 
plurality of processing elements including processing ele 
ment 113 . In the figure shown , the small squares inside 
vector engine 111 depict that vector engine 111 includes a 
plurality of processing elements arranged as a vector . In 
some embodiments , the processing elements are arranged in 
a vector in the same direction as data input 103 . In some 
embodiments , the processing elements are arranged in a 
vector in the same direction as weight input 105 . In various 
embodiments , the data size of the processing elements of 
vector engine 111 is the same size or larger than the data size 
of the computation units of matrix processor 107 . For 
example , in some embodiments , computation unit 109 
receives two operands each 1 byte in size and outputs a 
result 4 bytes in size . Processing element 113 receives the 
4 - byte result from computation unit 109 as an input 4 bytes 
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in size . In various embodiments , the output of vector engine 
111 is the same size as the input to vector engine 111 . In 
some embodiments , the output of vector engine 111 is 
smaller in size compared to the input to vector engine 111 . 
For example , vector engine 111 may receive up to 96 
elements each 4 bytes in size and output 96 elements each 
1 byte in size . In various embodiments , vector engine 111 
performs quantization on the output result resulting in the 
output of vector engine 111 being smaller in size compared 
to the input to vector engine 111 . In various embodiments , 
the quantization is performed as part of a single instruction . 
For example , a quantization and a non - linear function are 
performed as a single processor instruction . As described 
above , in some embodiments , the communication channel 
from data input 103 and weight input 105 to matrix proces 
sor 107 is 96 - elements wide with each element 1 byte in size 
and matches the output size of vector engine 111 ( 96 
elements wide with each element 1 byte in size ) . 
[ 0028 ] In some embodiments , the processing elements of 
vector engine 111 , including processing element 113 , each 
include an arithmetic logic unit ( ALU ) ( not shown ) . For 
example , in some embodiments , the ALU of each processing 
element is capable of performing arithmetic operations . In 
some embodiments , each ALU of the processing elements is 
capable of performing in parallel a rectified linear unit 
( ReLU ) function and / or scaling functions . In some embodi 
ments , each ALU is capable of performing a non - linear 
function including non - linear activation functions . In vari 
ous embodiments , each processing element of vector engine 
111 includes one or more flip - flops for receiving input 
operands . In some embodiments , each processing element 
has access to a slice of a vector engine accumulator and / or 
vector registers of vector engine 111 . For example , a vector 
engine capable of receiving 96 - elements includes a 96 - ele 
ment wide accumulator and one or more 96 - element vector 
registers . Each processing element has access to a one 
element slice of the accumulator and / or vector registers . In 
some embodiments , each element is 4 - bytes in size . In 
various embodiments , the accumulator and / or vector regis 
ters are sized to fit at least the size of an input data vector . 
In some embodiments , vector engine 111 includes additional 
vector registers sized to fit the output of vector engine 111 . 
[ 0029 ] In some embodiments , the processing elements of 
vector engine 111 are configured to receive data from matrix 
processor 107 and each of the processing elements can 
process the received portion of data in parallel . As one 
example of a processing element , processing element 113 of 
vector engine 111 receives data from computation unit 109 
of matrix processor 107 . In various embodiments , vector 
engine 111 receives a single vector processor instruction and 
in turn each of the processing elements performs the pro 
cessor instruction in parallel with the other processing 
elements . In some embodiments , the processor instruction 
includes one or more component instructions , such as a load , 
a store , and / or an arithmetic logic unit operation . In various 
embodiments , a no - op operation may be used to replace a 
component instruction . 
[ 0030 ] In the example shown , the dotted arrows between 
data input 103 and matrix processor 107 , weight input 105 
and matrix processor 107 , matrix processor 107 and vector 
engine 111 , and vector engine 111 and post - processing unit 
115 depict a coupling between the respective pair of com 
ponents that is capable of sending multiple data elements 
such as a vector of data elements . As an example , the 

communication channel between matrix processor 107 and 
vector engine 111 may be 96x32 bits wide and support 
transferring 96 elements in parallel where each element is 32 
bits in size . As another example , the communication channel 
between vector engine 111 and post - processing unit 115 may 
be 96x1 byte wide and support transferring 96 elements in 
parallel where each element is 1 byte in size . In various 
embodiments , data input 103 and weight input 105 are 
coupled to a memory module ( not shown in FIG . 1 ) and may 
each receive input data from the memory module . In some 
embodiments , vector engine 111 is additionally coupled to a 
memory module ( not shown in FIG . 1 ) and may receive 
input data from the memory module in addition or alterna 
tively to input from matrix processor 107 . In the various 
embodiments , a memory module is typically a static random 
access memory ( SRAM ) . 
[ 0031 ] In some embodiments , one or more computation 
units of matrix processor 107 may be grouped together into 
a lane such that matrix processor 107 has multiple lanes . In 
various embodiments , the lanes of matrix processor 107 may 
be aligned with either data input 103 or weight input 105 . 
For example , a lane aligned with weight input 105 includes 
a set of computation units that are configured to receive as 
input every operand of weight input 105 . Similarly , a lane 
aligned with data input 103 includes a set of computation 
units that are configured to receive as input every operand of 
data input 103 . In the example shown in FIG . 1 , the lanes are 
aligned along weight input 105 in a vertical column and each 
lane feeds to a corresponding lane of vector engine 111 . In 
some embodiments , each lane is a vertical column of sub 
circuits that include multiply , add and / or accumulate , and 
shift functionality . In some embodiments , matrix processor 
107 includes a matrix of tiles and each tile is a matrix of 
computation units . For example , a 96x96 matrix processor 
may include a matrix of 6x6 tiles , where each tile includes 
16x16 computation units . In some embodiments , a vertical 
lane is a single column of tiles . In some embodiments , a 
horizontal lane is a single row of tiles . In various embodi 
ments , the dimensions of the lane may be configured 
dynamically and may be utilized for performing alignment 
operations on the input to matrix processor 107 , vector 
engine 111 , and / or post - processing unit 115 . In some 
embodiments , the dynamic configuration is performed by or 
using control unit 101 and / or with using processor instruc 
tions controlled by control unit 101 . 
[ 0032 ] In some embodiments , control unit 101 synchro 
nizes the processing performed by matrix processor 107 , 
vector engine 111 , and post - processing unit 115 . For 
example , control unit 101 may send processor specific 
instructions to each of matrix processor 107 , vector engine 
111 , and post - processing unit 115 . Control unit 101 may 
send matrix processor instructions to matrix processor 107 . 
A matrix processor instruction may be a computational array 
instruction that instructs a computational array to perform an 
arithmetic operation , such as a dot - product or dot - product 
component , using specified operands from data input 103 
and / or weight input 105 . Control unit 101 may send vector 
processor instructions to vector engine 111 . For example , a 
vector processor instruction may include a single processor 
instruction with a plurality of component instructions to be 
executed together by the vector computational unit . Control 
unit 101 may send post - processing instructions to post 
processing unit 115 . In various embodiments , control unit 
101 synchronizes data that is fed to matrix processor 107 
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from data input 103 and weight input 105 , to vector engine 
111 from matrix processor 107 , and to post - processing unit 
115 from vector engine 111 . In some embodiments , control 
unit 101 synchronizes the data between different compo 
nents of microprocessor system 100 including between data 
input 103 , weight input 105 , matrix processor 107 , vector 
engine 111 , and / or post - processing unit 115 by utilizing 
processor specific memory , queue , and / or dequeue opera 
tions . In some embodiments , data and instruction synchro 
nization is performed by control unit 101 . In some embodi 
ments , data and instruction synchronization is performed by 
control unit 101 that includes one or more sequencers to 
synchronize processing between matrix processor 107 , vec 
tor engine 111 , and / or post - processing unit 115 . 
[ 0033 ] In some embodiments , matrix processor 107 and 
vector engine 111 are utilized for processing convolution 
layers . In some embodiments , vector engine 111 is utilized 
for performing non - linear functions such as an activation 
function on the output of matrix processor 107 . For example , 
matrix processor 107 may be used to calculate a dot - product 
and vector engine 111 may be used to perform an activation 
function such as a rectified linear unit ( ReLU ) or sigmoid 
function . In some embodiments , post - processing unit 115 is 
utilized for performing pooling operations . In some embodi 
ments , post - processing unit 115 is utilized for formatting 
and storing the processed data to memory and may be 
utilized for synchronizing memory writing latency . 
[ 0034 ] FIG . 2 is a block diagram illustrating an embodi 
ment of a microprocessor system for performing machine 
learning processing . In the example shown , microprocessor 
system 200 includes control unit 201 , vector input 203 , 
vector engine input queue 207 , vector engine 211 , and 
post - processing unit 215 . Vector engine input queue 207 
includes a plurality of computation units including compu 
tation units 209 and 221 - 229 and vector engine 211 includes 
a plurality of processing elements including processing 
elements 213 and 231 . Vector input 203 is an input module 
for feeding data into vector engine input queue 207 . In some 
embodiments , vector input 203 includes an input data for 
matter , a cache or buffer , and / or a logic circuit for preparing 
data for vector engine input queue 207 . For example , vector 
input 203 may prepare N operands from a two - dimensional 
array to be processed by vector engine 211 utilizing vector 
engine input queue 207 as a first - in - first - out ( FIFO ) input 
queue . In some embodiments , vector input 203 is coupled to 
memory ( not shown in FIG . 2 ) , such as static random access 
memory ( SRAM ) for retrieving data . 
[ 0035 ] In various embodiments , control unit 201 , vector 
input 203 , vector engine input queue 207 , vector engine 211 , 
and post - processing unit 215 are , respectively , control unit 
101 , data input 103 , matrix processor 107 , vector engine 
111 , and post - processing unit 115 of FIG . 1 . For example , 
matrix processor 107 of FIG . 1 may be used to implement 
an input queue such as vector engine input queue 207 by 
receiving data from data input 103 of FIG . 1 and repeatedly 
shifting each vector of input towards vector engine 111 of 
FIG . 1 . 
[ 0036 ] In some embodiments , vector engine input queue 
207 is a computational array unit and includes a matrix of 
computation units whose columns are first - in - first - out 
( FIFO ) queues . In the example shown , vector engine input 
queue 207 is an input queue for vector input 203 and 
functions as a wide first - in - first - out ( FIFO ) queue to feed 
multiple data elements from vector input 203 to vector 

engine 211 . For example , computation units 221 - 229 make 
up a vertical column of computation units that work together 
as a single FIFO queue . In various embodiments , vector 
engine input queue 207 includes multiple FIFO queues made 
up of vertical columns of computation units similar to 
computation units 221 - 229 . For example , in an embodiment 
where vector engine input queue 207 is 96 computation units 
wide , vector engine input queue 207 has 96 vertical columns 
of computation units that correspond to 96 FIFO queues . As 
a further example , in an embodiment where vector engine 
input queue 207 is 96 computation units long , vector engine 
input queue 207 has FIFO queues that are 96 stages long . 
[ 0037 ] In various embodiments , each first - in - first - out 
( FIFO ) queue works in parallel and shifts input received 
from the vector input 203 along the FIFO queue to vector 
engine 211 . The first row of computation units of vector 
engine input queue 207 , which includes computation unit 
221 , is connected to the vector input 203 . The first row of 
computation units is configured to receive an entire row of 
data from vector input 203 in parallel . The last row of 
computation units of vector engine input queue 207 is 
connected to the row of processing elements of vector 
engine 211 . For example , the last row of computation units 
of vector engine input queue 207 includes computation units 
229 and 209 . Computation unit 209 is connected to process 
ing element 213 and computation unit 229 is connected to 
processing element 231 . Processing elements 213 and 231 
are configured to receive the data output elements of com 
putation units 209 and 229 , respectively . The processing 
elements of vector engine 211 receive an entire row of data 
from the last row of computation units of vector engine input 
queue 207 in parallel . In various embodiments , when the last 
row of computation units of vector engine input queue 207 
has data available to dequeue , a dequeue ready signal is 
received by vector engine 211 to indicate the vector engine 
input queue 207 is ready to receive a queue operation . 
[ 0038 ] . In the example described , the data from the first 
row of computation units is shifted down the column to the 
next row of computation units in the logical direction 
towards vector engine 211 . For example , an input corre 
sponding to a data element of vector input 203 is received as 
an operand at computation unit 221 and shifted from com 
putation unit 221 to computation unit 222 , from computation 
unit 222 to computation unit 223 , from computation unit 223 
to computation unit 224 , and so forth , until an operand 
received at computation unit 221 is incrementally shifted 
from computation unit 221 to computation unit 229 via the 
intermediate computation units 222 - 228 . In various embodi 
ments , a data element pushed into the FIFO takes as many 
shifts as the FIFO is deep in computation units . For example , 
a FIFO queue with 96 computation units and 96 stages long 
requires 96 shifts to dequeue an inserted element . In various 
embodiments , each stage of the FIFO can shift an operand 
in parallel with the other stages . For example , while each 
intermediate computation unit in the FIFO queue shifts its 
operand to the next computation unit , the first computation 
unit can retrieve the next data element from vector input 203 
and the last computation unit can dequeue its data element 
to be received by the corresponding processing element of 
vector engine 211 . In the example described , each compu 
tation unit along each row of computation units works in 
parallel to shift its corresponding data element originally 
received from vector input 203 to vector engine 211 . 
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[ 0039 ] In some embodiments , vector engine input queue 
207 is coupled to vector input 203 and one dimension of the 
matrix of computation units matches the dimension of vector 
input 203 . For example , in an embodiment with vector input 
203 having a width of 96 bytes , vector engine input queue 
207 has a matrix of computation units with a width of at least 
96 bytes . In some embodiments , the width of vector input 
203 and the corresponding width of the inputs to vector 
engine input queue 207 are dynamically configurable . For 
example , vector input 203 can be dynamically configured to 
96 bytes or 96x2 bytes and the corresponding width of 
inputs to vector engine input queue 207 are configurable to 
96 bytes or 96x2 bytes , respectively . In some embodiments , 
the configuration is performed using control unit 201 and / or 
processor instructions to vector engine input queue 207 . 
[ 0040 ] In some embodiments , vector engine 211 is a 
vector computational unit that is communicatively coupled 
to vector engine input queue 207 . Vector engine 211 includes 
a plurality of processing elements including processing 
elements 213 and 231 . In the figure shown , the small squares 
inside vector engine 211 depict that vector engine 211 
includes a plurality of processing elements arranged as a 
vector . In some embodiments , the processing elements are 
arranged in a vector in the same direction as vector input 
203 . In various embodiments , the data size of the processing 
elements of vector engine 211 is the same size or larger than 
the data size of the computation units of vector engine input 
queue 207 . For example , in some embodiments , computa 
tion unit 209 receives an operand 1 byte in size and dequeues 
an output to processing element 213 also having a size of 1 
byte . Processing element 213 receives the 1 byte output from 
computation cell 209 as an input 1 byte in size . In various 
embodiments , the output of vector engine 211 is the same 
size as the input to vector engine 211 . In various embodi 
ments , the output of vector engine 211 is smaller in size as 
compared to the input to vector engine 211 . For example , 
vector engine 211 may receive up to 96 elements each 4 
bytes in size and output 96 elements each 1 byte in size . In 
some embodiments , the communication channel from vector 
input 203 to vector engine input queue 207 is 96 elements 
wide with each element 1 byte in size and matches the output 
size of vector engine 211 ( 96 elements wide with each 
element 1 byte in size ) . 
[ 0041 ] In some embodiments , the processing elements of 
vector engine 211 , including processing elements 213 and 
231 , each include an arithmetic logic unit ( not shown ) and 
are described in further detail with respect to vector engine 
111 of FIG . 1 . In some embodiments , the processing ele 
ments of vector engine 211 are configured to receive data 
from vector engine input queue 207 and each of the pro 
cessing elements can process the received portion of data in 
parallel . As one example of a processing element , processing 
elements 213 and 231 of vector engine 211 receive data from 
computation units 209 and 229 , respectively , of vector 
engine input queue 207 . In various embodiments , vector 
engine 211 receives a single vector processor instruction and 
in turn each of the processing elements performs the pro 
cessor instruction in parallel with the other processing 
elements . In some embodiments , the processor instruction 
includes one or more component instructions , such as a load , 
a store , and / or an arithmetic logic unit operation . In various 
embodiments , a no - op operation may be used to replace a 
component instruction . 

( 0042 ] In the example shown , the dotted arrows between 
vector input 203 and vector engine input queue 207 , vector 
engine input queue 207 and vector engine 211 , and vector 
engine 211 and post - processing unit 215 depict a coupling 
between the respective pair of components that is capable of 
sending multiple data elements . As an example , the com 
munication channel between vector engine input queue 207 
and vector engine 211 may be 96x32 bits wide and support 
transferring 96 elements in parallel where each element is 32 
bits in size . As another example , the communication channel 
between vector engine 211 and post - processing unit 215 
may be 96x1 byte wide and support transferring 96 elements 
in parallel where each element is 1 byte in size . In various 
embodiments , vector input 203 is coupled to a memory 
module ( not shown in FIG . 2 ) and may receive input data 
from the memory module . In some embodiments , vector 
engine 211 is additionally coupled to a memory module ( not 
shown in FIG . 1 ) and may receive input data from the 
memory module in addition or alternatively to input from 
vector engine input queue 207 . In the various embodiments , 
a memory module is typically a static random access 
memory ( SRAM ) . 
[ 0043 ] In some embodiments , one or more computation 
units of vector engine input queue 207 may be grouped 
together into a vertical column such that vector engine input 
queue 207 has multiple vertical column lanes . In the 
example shown in FIG . 2 , the lanes are aligned along the 
same vertical columns as the first - in - first - out ( FIFO ) queues 
described above and each lane feeds to a corresponding lane 
of vector engine 211 . In some embodiments , each lane is a 
vertical column of sub - circuits that include multiply , add 
and / or accumulate , and shift functionality . In some embodi 
ments , a vertical lane is a single column of computation 
units . In some embodiments , a vertical lane is a group of 
multiple columns of adjacent computation units . In various 
embodiments , the dimensions of the lane may be configured 
dynamically and may be utilized for performing alignment 
operations on the input to vector engine input queue 207 , 
vector engine 211 , and / or post - processing unit 215 . In some 
embodiments , the dynamic configuration is performed by or 
using control unit 201 and / or with using processor instruc 
tions controlled by control unit 201 . 
[ 0044 ] In some embodiments , control unit 201 synchro 
nizes the processing performed by vector engine input queue 
207 , vector engine 211 , and / or post - processing unit 215 . For 
example , control unit 201 may send processor specific 
instructions to each of vector engine input queue 207 , vector 
engine 211 , and post - processing unit 215 . Control unit 201 
may send vector engine input queue instructions to vector 
engine input queue 207 . In some embodiments , vector 
engine input queue instructions are a subset of the matrix 
processor instructions that matrix processor 107 of FIG . 1 is 
capable of responding to and is described further with 
respect to FIG . 1 . A vector engine input queue instruction 
may be a computational array instruction that instructs a 
computational array to perform a load operation , a shift 
operation , or other appropriate instruction for interfacing 
with an input queue . Control unit 201 may send vector 
processor instructions to vector engine 211 . For example , a 
vector processor instruction may include a single processor 
instruction with a plurality of component instructions to be 
executed together by the vector computational unit . Control 
unit 201 may send post - processing instructions to post 
processing unit 215 . In various embodiments , control unit 
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201 synchronizes data that is fed to vector engine input 
queue 207 from vector input 203 , to vector engine 211 from 
vector engine input queue 207 , and to post - processing unit 
215 from vector engine 211 . In some embodiments , control 
unit 201 synchronizes the data between different compo 
nents vector input 203 , vector engine input queue 207 , 
vector engine 211 , and / or post - processing unit 215 by uti 
lizing processor specific memory , queue , and / or dequeue 
operations . The functionality of control unit 201 is described 
in further detail with respect to control unit 101 of FIG . 1 . 
[ 0045 ] In some embodiments , control unit 201 is utilized 
to configure the size and number of data elements to be 
received by vector engine input queue 207 , vector engine 
211 , and / or post - processing unit 215 . For example , in some 
embodiments , control unit 201 may be utilized to configure 
the input to vector engine input queue 207 as 96 elements 
each of size 1 byte or other appropriate variations such as 48 
elements each of size 2 bytes , 96 elements each of size 2 
bytes , 192 elements each of size 4 bits , etc . In some 
embodiments , vector engine input queue 207 is able to 
output a data element with a size larger than it can receive 
by performing a sequence of load and logical shift opera 
tions . For example , a 4 - byte input data element is loaded into 
vector engine input queue 207 by reading four sequential 
1 - byte portions of the 4 - byte input data element and logi 
cally shifting each byte to the appropriate bit fields . As 
another example , in some embodiments , control unit 201 
may be utilized to configure the input to vector engine 211 
as 96 elements each of size 4 bytes , or other appropriate 
variations such as 96 elements each of size 1 byte , 48 
elements each of size 2 bytes , etc . 
[ 0046 ] In various embodiments , post - processing unit 215 
is utilized to perform post - processing of output from vector 
engine 211 . The post - processing functionality of post - pro 
cessing unit 215 is described in further detail with respect to 
post - processing unit 115 of FIG . 1 . 
[ 0047 ] FIG . 3 is a block diagram illustrating an embodi 
ment of a microprocessor system for performing machine 
learning processing . In the example shown , microprocessor 
system 300 includes control unit 301 , memory 307 , vector 
engine 311 , and post - processing unit 315 . In various 
embodiments , memory 307 is typically a static random 
access memory ( SRAM ) . In various embodiments , post 
processing unit 315 received input data from vector engine 
311 and is utilized to perform post - processing of output from 
vector engine 311 . The post - processing functionality of 
post - processing unit 315 is described in further detail with 
respect to post - processing unit 115 of FIG . 1 . 
[ 0048 ] The block diagram of FIG . 3 depicts a system 
architecture embodiment where vector engine 311 is coupled 
to memory 307 and may retrieve data directly from memory 
307 . In various embodiments , the size of the communication 
channel between memory 307 and vector engine 311 may be 
configured to transfer multiple data elements in parallel from 
memory 307 to vector engine 311 . For example , in an 
embodiment where vector engine 311 is capable of receiving 
96 elements each of 32 bits in size in parallel , the size of the 
communication channel between memory 307 and vector 
engine 311 is configured to transfer 96 elements each of 32 
bits in size from memory 307 to vector engine 311 in 
parallel . In some embodiments , memory 307 includes a data 
formatter ( not shown ) which may include a data cache or 
buffer and / or a logic circuit for formatting data from 
memory prior to transfer to vector engine 311 . For example , 

data elements of size 1 byte may be stored on word bound 
aries in memory 307 and the data formatter is utilized to 
format and / or mask the data to byte boundaries . In various 
embodiments , control unit 301 , vector engine 311 , and 
post - processing unit 315 are , respectively , control unit 101 , 
vector engine 111 , and post - processing unit 115 of FIG . 1 . In 
various embodiments , vector engine 311 may be further 
coupled to a matrix processor ( not shown ) as described with 
respect to matrix processor 107 of FIG . 1 . 
[ 0049 ] In some embodiments , vector engine 311 is a 
vector computational unit that is communicatively coupled 
to memory 307 . Vector engine 311 includes a plurality of 
processing elements including processing element 313 . In 
the figure shown , the small squares inside vector engine 311 
depict that vector engine 311 includes a plurality of pro 
cessing elements arranged as a vector . In some embodi 
ments , the processing elements of vector engine 311 , includ 
ing processing element 313 , each include an arithmetic logic 
unit ( not shown ) . The processing elements of vector engine 
311 are configured to receive data from memory 307 and 
each of the processing elements can process the received 
portion of data in parallel . In various embodiments , vector 
engine 311 receives a single vector processor instruction and 
in turn each of the processing elements performs the pro 
cessor instruction in parallel with the other processing 
elements . In some embodiments , the processor instruction 
includes one or more component instructions , such as a load , 
a store , and / or an arithmetic logic unit operation . The 
functionality of vector engine 311 is described in further 
detail with respect to vector engine 111 and 211 of FIGS . 1 
and 2 , respectively . 
[ 0050 ] In some embodiments , control unit 301 synchro 
nizes the processing performed by vector engine 311 and 
post - processing unit 315 , and access to memory 307 . For 
example , control unit 301 may send processor specific 
instructions to each of vector engine 311 and post - process 
ing unit 315 . In some embodiments , control unit 301 may 
send vector processor instructions to vector engine 311 . For 
example , a vector processor instruction may include a single 
processor instruction with a plurality of component instruc 
tions to be executed together by the vector computational 
unit . In some embodiments , control unit 301 may send 
post - processing instructions to post - processing unit 315 . In 
various embodiments , control unit 301 synchronizes data 
that is received by vector engine 311 from memory 307 and 
received by post - processing unit 315 from vector engine 
311 . In some embodiments , control unit 301 synchronizes 
the data between different components vector engine 311 
and / or post - processing unit 315 by utilizing vector engine 
and / or post - processing unit processor specific operations . 
The functionality of control unit 301 is described in further 
detail with respect to control unit 101 of FIG . 1 . 
[ 0051 ] In some embodiments , control unit 301 is utilized 
to configure the size and number of data elements to be 
received by vector engine 311 and / or post - processing unit 
315 . For example , in some embodiments , control unit 301 
may be utilized to configure vector engine 311 to receive 96 
data elements each of size 4 bytes , or other appropriate 
variations such as 96 elements each of size 1 byte , 48 
elements each of size 2 bytes , etc . As described further with 
respect to FIGS . 1 and 2 , the dotted arrows between vector 
engine 311 and post - processing unit 315 depict a coupling 
between the respective pair of components that is capable of 
sending multiple data elements . As an example , the com 
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munication channel between vector engine 311 and post - 
processing unit 315 may be 96x1 byte wide and support 
transferring 96 elements in parallel where each element is 1 
byte in size . 
[ 0052 ] FIG . 4A is a block diagram illustrating an embodi 
ment of a vector computational unit for performing machine 
learning processing . In the example shown , microprocessor 
system 400 includes vector computational unit 401 , input 
bus 411 , and output bus 431 . Input to vector computational 
unit 401 arrives from input bus 411 . Output from vector 
computational unit 401 is written to output bus 431 . In some 
embodiments , input bus 411 and output bus 431 are a single 
bus that includes the functionality of both input bus 411 and 
output bus 431 . In various embodiments , input bus 411 and 
output bus 431 are wide data buses that allow the transfer of 
multiple data elements in parallel . For example , input bus 
411 may be 96x32 bits wide and output bus 431 may be 96 
bytes wide to accommodate the parallel processing func 
tionality of computational unit 401 . In some embodiments , 
vector computational unit 401 receives vector computational 
unit instructions via input bus 411 . In some embodiments , 
vector computational unit 401 receives vector computational 
unit instructions via a communication channel other than 
input bus 411 such as an instruction bus ( not shown ) . 
[ 0053 ] In various embodiments , vector computational unit 
401 is vector engine 111 , 211 , and / or 311 of FIGS . 1 , 2 , and 
3 , respectively . In some embodiments , input bus 411 is 
connected to matrix processor 107 of FIG . 1 , vector engine 
input queue 207 of FIG . 2 , and / or memory 307 of FIG . 3 . In 
some embodiments , output bus 431 is connected to post 
processing units 115 , 215 , and / or 315 of FIGS . 1 , 2 , and 3 , 
respectively . In various embodiments , vector computational 
unit 401 is bi - directionally coupled to a control unit ( not 
shown ) of microprocessor system 400 external to vector 
computational unit 401 , such as control units 101 , 201 , 
and / or 301 of FIGS . 1 , 2 , and 3 , respectively . In various 
embodiments , the control unit of microprocessor system 400 
sends vector computational unit instructions to vector com 
putational unit 401 . In some embodiments , the control unit 
of microprocessor system 400 includes one or more 
sequencers for synchronizing instructions and data to vector 
computational unit 401 . 
[ 0054 ] In the example shown , vector computational unit 
401 includes registers 421 , vector engine control logic 423 , 
input buffer 425 , arithmetic logic units ( ALUS ) 427 , and 
output buffer 429 . Input data from input bus 411 is received 
by input buffer 425 and output written to output bus 431 is 
written from output buffer 429 . In some embodiments , input 
buffer 425 and output buffer 429 are data buffers or caches 
and provide memory synchronization functionality . For 
example , in some embodiments , input reads from input bus 
411 and / or output writes to output bus 431 have an unpre 
dictable latency that can be smoothed out by utilizing input 
buffer 425 to receive input data and output buffer 429 for 
storing calculated results . As another example , output bus 
431 may not be available when output from ALUS 427 is 
ready for writing . In some embodiments , output buffer 429 
allows ALUS 427 to continue processing pending data until 
output bus 431 is available for writing the results stored at 
output buffer 429 . In various embodiments , input bus 411 
and output bus 431 are communication channels controlled 
by a control unit ( not shown ) of microprocessor system 400 . 
10055 ] As described above , in various embodiments , a 
vector computational unit includes a plurality of processing 

elements . In some embodiments , each processing element 
includes individual functionality for loading data , storing 
data , and performing arithmetic logic unit operations . The 
individual processing elements are not depicted in the block 
diagram of FIG . 4A . In various embodiments , arithmetic 
logic units ( ALUS ) 427 include the corresponding arithmetic 
logic unit ( ALU ) of each processing unit . Similarly , input 
buffer 425 and output buffer 429 include corresponding 
input buffers and output buffers for each processing unit . In 
various embodiments , ALUS 427 include ALU logic for 
processing every element of an input vector to vector 
computational unit 401 in parallel . In some embodiments , 
ALUS 427 include logic for quantizing the ALU result . In 
various embodiments , the ALU logic , for example , logic for 
performing a non - linear function and quantization , can be 
performed in response to a single processor instruction . 
[ 0056 ] In various embodiments , registers 421 includes 
registers for implementing the functionality of vector com 
putational unit 401 . For example , registers 421 may be used 
to store operands for performing vector computational unit 
instructions , to implement bit masks , and to reference vector 
elements using different memory - sized register aliases , 
among other appropriate functionality . In some embodi 
ments , registers 421 include arithmetic instruction vector 
registers ; mask registers ; registers for performing arithmetic 
operations such as add , subtract , and floating point opera 
tions ; and / or registers for aliasing vector elements . In some 
embodiments , the registers used for aliasing vector elements 
are also utilized for performing arithmetic operations . 
[ 0057 ] In some embodiments , registers 421 include arith 
metic instruction vector registers . For example , registers 
may be used as operands for load operations , store opera 
tions , and arithmetic logic unit ( ALU ) operations . As 
another example , in some embodiments , an ALU operation 
may take as arguments up to four vector registers , three as 
source registers and one as a destination register . In various 
embodiments , the vector registers used by processor opera 
tions are aliased to different vector elements based on the 
size of the vector element . For example , in some embodi 
ments , a different set of vector registers are available for 
operating on 8 - bit , 16 - bit , 32 - bit , and / or floating point 
values . In some embodiments , the set of vector registers for 
32 - bit values is also used for floating point values . In various 
embodiments , 32 - bit vector registers are aliased to 16 - bit 
vector registers and 8 - bit vector registers . For example , one 
32 - bit vector register is aliased to two 16 - bit vector registers 
and four 8 - bit vector registers . As another example , a vector 
computational unit 401 with eight 96x32 - bit vector registers 
( registers RDO - RD7 ) is aliased to sixteen 96x16 - bit vector 
registers ( registers RWO - RW15 ) , and thirty - two 96x8 - bit 
vector registers ( registers RBO - RB31 ) . RDO is a 96x32 - bit 
vector register , RWO is a 96x16 - bit vector register , and RBO 
is a 96x8 - bit vector register . A further example of vector 
register aliasing is depicted in FIG . 4B . 
[ 0058 ] . In some embodiments , registers 421 include one or 
more bit mask registers based on the number of processing 
elements of vector computational unit 401 . For example , a 
vector computational unit with 96 processing elements may 
include one or more 96 - bit mask registers . In various 
embodiments , a mask register may be set by loading a 
bit - mask from memory . A mask register may be used to store 
the results of logical operations performed on input data to 
vector computational unit 401 . 
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[ 0059 ] In some embodiments , registers 421 include reg - 
isters for performing arithmetic operations such as add , 
subtract , and floating point operations . For example , in some 
embodiments , vector computational unit 401 includes reg 
isters for storing carry - out bits for vector add and subtract 
instructions and status bits corresponding to floating point 
instructions . 
[ 0060 ] In some embodiments , vector computational unit 
401 includes an instruction buffer ( not shown ) for storing a 
sequence of vector computational unit instructions . In some 
embodiments , the instruction buffer is a command queue . In 
various embodiments , the instruction buffer includes one or 
more pointers to reference the current and / or last instruction 
to be performed . In various embodiments , the instruction 
buffer acts as a cache of vector computational unit instruc 
tions . For example , one or more vector computational unit 
instructions are loaded into an instruction buffer of vector 
computational unit 401 and cached until the instructions can 
be executed . As instructions are executed and no longer 
needed , new instructions may be loaded into the instruction 
buffer . In some embodiments , the vector computational unit 
instructions are received from an external instruction com 
mand queue via a control logic ( not shown ) of micropro 
cessor system 400 . 
[ 0061 ] In some embodiments , vector computational unit 
401 includes a vector engine control logic 423 . Vector 
engine control logic 423 is utilized to implement the func 
tionality of the vector computational unit 401 including 
fetching vector computational unit instructions , decoding 
the instructions , and / or executing the instructions . In various 
embodiments , the vector engine control logic 423 includes 
logic for reading , writing , masking , and / or aliasing the data 
via input buffer 425 , output buffer 429 , and registers 421 . In 
some embodiments , vector computational unit 401 receives 
a dequeue ready signal and determines using vector engine 
control logic 423 that data is available via input bus 411 . For 
example , vector engine control logic 423 may dequeue data 
from an input first - in - first - out queue ( not shown ) attached to 
input bus 411 on receipt of a dequeue ready signal . 
[ 0062 ] FIG . 4B is a table illustrating an exemplary aliasing 
of vector registers . Table 450 illustrates the aliasing of 
vector registers for a vector computational unit embodiment 
with eight 96x32 - bit vector registers ( registers RDO - RD7 ) 
aliased to sixteen 96x16 - bit vector registers ( registers RWO 
RW15 ) , and thirty - two 96x8 - bit vector registers ( registers 
RBO - RB31 ) . In some embodiments , the vector registers in 
Table 450 are the vector registers of registers 421 of vector 
computational unit 401 of FIG . 4A . In the example shown , 
row 451 includes columns for the bytes 0 , 1 , 2 , and 3 that are 
aliased to the respective registers listed in the rows below it . 
Rows 453 , 463 , and 473 correspond to 96x32 - bit vector 
registers RDO , RD1 , and RD7 . Rows 455 , 465 , and 475 
correspond to 96x16 - bit vector registers RW0 - 3 and RW14 
15 . Rows 457 , 467 , and 477 correspond to 96x8 - bit vector 
registers RB0 - 7 and RB28 - 31 . In the example , bytes 0 - 3 are 
one of the 96 lanes of a vector computational unit such as 
vector engine 111 , 211 , and / or 311 of FIGS . 1 , 2 , and 3 , 
respectively . 
10063 ] In the example shown , table 450 illustrates vector 
register aliasing for a single lane of the 96 lanes of a vector 
computational unit embodiment . The 96x32 - bit vector reg 
ister RDO utilizes four bytes ordered from byte ( to byte 3 . 
The 96x16 - bit vector registers RWO and RW1 are aliased to 
2 bytes each . Vector register RWO is aliased to byte 0 and 

byte 1 and vector register RW1 is aliased to byte 2 and byte 
3 . The 96x8 - bit vector registers RBO - RB3 are aliased to 1 
byte each corresponding to bytes 0 - 3 , respectively . Simi 
larly , the 96x32 - bit vector register RD1 is aliased to the 
96x16 - bit vector registers RW2 ( bytes 0 and 1 ) and RW3 
( bytes 2 and 3 ) , and the 96x8 - bit vector registers RB4 - RB7 
for bytes 0 - 3 , respectively . As another example , the 96x32 
bit vector register RD7 is aliased to the 96x16 - bit vector 
registers RW14 ( bytes 0 and 1 ) and RW15 ( bytes 2 and 3 ) , 
and the 96x8 - bit vector registers RB28 - RB31 for bytes 0 - 3 , 
respectively . 
[ 0064 ] In various embodiments , vector computational unit 
instructions operate on all 96 lanes of a vector register in 
parallel . For example , for each of the 96 lanes , vector 
register RBO operates on byte 0 , vector register RB5 oper 
ates on byte 1 , vector register RW2 operates on bytes 0 and 
1 , vector register RW15 operates on bytes 2 and 3 , and 
vector register RD7 operates on bytes 0 - 3 in parallel . 
[ 0065 ] FIG . 5 is a flow diagram illustrating an embodi 
ment of a process for determining processor instructions for 
a microprocessor system . In some embodiments , the process 
of FIG . 5 converts a software program written with a high 
level programming language into a sequence of computa 
tional array and vector computational unit instructions for a 
microprocessor system with a computational array and a 
vector computational unit . In various embodiments , the 
microprocessor system is microprocessor system 100 of 
FIG . 1 , a computational array is matrix processor 107 of 
FIG . 1 , and a vector computational unit is vector engine 111 
of FIG . 1 . In various embodiments , the process of FIG . 5 is 
utilized to implement applications relying on machine learn 
ing including applications that perform inference using a 
machine learning model such as self - driving and driver 
assisted automobiles . 
[ 0066 ] At 501 , a determination is made on the processing 
to be performed and the subset of processing to be assigned 
to different co - processing components such as a computa 
tional array , a vector computational unit , and / or a post 
processing unit . In various embodiments , the processing is 
assigned based on the functionality and efficiency of the 
different co - processing components . For example , certain 
matrix - related operations are assigned to a computational 
array and operations involving non - linear functions such as 
activation functions may be assigned to a vector computa 
tional unit . In some embodiments , pooling operations are 
assigned to a post - processing unit . As another example , in 
some embodiments , at 501 , a determination is made that a 
convolution operation requires a dot - product operation and 
that the dot - product operation best utilizes matrix processing 
performed by a computational array . In some embodiments , 
this determination is performed by compiling a machine 
learning application to target the microprocessor system 
described herein . 
[ 0067 ] At 503 , one or more matrix processor instructions 
are determined that correspond to the processing determined 
and assigned at 501 . For example , the dot - product operation 
determined at 501 to be performed by a matrix processor is 
converted to one or more matrix processer instructions . In 
various embodiments , the matrix processor instructions are 
computational array instructions . As an example , the com 
putational array instructions may require that one or more 
data vectors are received from a data input component , such 
as data input 103 of FIG . 1 , and one or more weight vectors 
are received from a corresponding weight input component , 
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such as weight input 105 of FIG . 1 . Additional computa 
tional array instructions may include the multiply , accumu 
late , and shift operations for processing a dot - product opera 
tion . For example , one or more dot - product component 
operations may be used to calculate a dot - product result . In 
various embodiments , the computational array instructions 
are directed to processing performed on received input data 
by the corresponding computation units of the computa 
tional array . In some embodiments , additional computa 
tional array instructions include instructions for preparing 
the dot - product result for processing by the vector compu 
tational unit . 
10068 ] At 505 , a determination is made regarding the 
vector engine instructions to be performed by the vector 
computational unit . For example , operations related to an 
activation function determined at 501 to be performed by a 
vector engine are converted to one or more vector engine 
instructions . In various embodiments , the vector engine 
instructions are vector computational unit instructions . As an 
example , the vector computational unit instructions may 
require that one or more data vectors are received from a 
computational array , such as matrix processor 107 of FIG . 1 . 
Additional vector computational unit instructions may 
include operations for performing a non - linear activation 
function , such as a rectified linear unit ( ReLu ) function . In 
various embodiments , the vector computational unit instruc 
tions are directed to processing performed on received input 
data by the corresponding processing elements of the vector 
computational unit . In some embodiments , additional vector 
computational unit instructions include instructions for pre 
paring the result of the processing elements for post - pro 
cessing by the post - processing unit . 
100691 In various embodiments , each vector computa 
tional unit instruction is a single processor instruction that 
specifies a plurality of component instructions to be 
executed together by the vector computational unit . The 
execution of the plurality of component instructions is 
performed by the processing elements of the vector compu 
tational unit in parallel on different data input elements in 
response to a single vector computational unit instruction . 
For example , in some embodiments , a single processor 
instruction includes three component instructions : a separate 
load , arithmetic logic unit , and store instruction . The three 
component instructions are received and executed by the 
vector computational unit . In some embodiments , the bun 
dling of component instructions into a single processing 
instruction is performed at 505 . In various embodiments , the 
order and selection of component instructions for bundling 
into a vector computational unit instruction is based on 
determined data hazards . 
[ 0070 ] At 507 , a determination is made regarding the 
post - processing instructions to be performed by the post 
processing unit . For example , operations related to post 
processing functionality are determined at 501 to be per 
formed by a post - processing unit and are converted to one or 
more post - processing instructions . As an example , the post 
processing instructions may require that one or more data 
vectors are received from a vector computational unit , such 
as vector engine 111 of FIG . 1 . Additional post - processing 
instructions may include operations for performing pooling 
layer functionality , such as a maxpooling . In various 
embodiments , post - processing instructions may include 
instructions for configuring the pooling functionality such as 
kernel size , stride , and / or spatial extent , among others . In 

some embodiments , additional post - processing instructions 
include instructions for preparing and writing out the results 
of post - processing . 
[ 0071 ] At 509 , the sequence corresponding to the execu 
tion of the collection of co - processor instructions deter 
mined at 503 , 505 , and 507 is scheduled . For example , the 
relative order and / or sequence of the respective processor 
instructions for the various co - processors , such as compu 
tational array , a vector computational unit , and / or a post 
processing unit , is determined . In some embodiments , the 
sequence depends on the interaction and dependencies 
between the co - processors . For example , the input to a 
vector computational unit may depend on the availability of 
output results from a computational array . In various 
embodiments , dependencies including data hazards are 
determined and accounted for . For example , in various 
embodiments , vector computational unit instructions 
include a plurality of component instructions and can be 
executed such that multiple vector computational unit 
instructions are executed in parallel . Data hazards based on 
unavailable data resources are determined and accounted 
for . For example , no - ops may be inserted into the component 
instructions of a vector computational unit instruction to 
allow a load operation to complete before an arithmetic logic 
unit operation that depends on the completion of the load 
operation is performed . In some embodiments , the bundling 
of component instructions into a single vector computational 
unit instruction is determined at 509 . In some embodiments , 
some or all of the instruction scheduling , such as the 
ordering of co - processor instructions , is performed at 503 
and 505 for a matrix processor and vector engine , respec 
tively . For example , in some embodiments , the bundling of 
component instructions for each single vector computational 
unit instruction is determined at 505 . 
[ 0072 ] In some embodiments , a control unit and / or one or 
more sequencers of a microprocessor system are utilized to 
initiate and coordinate the processing of the collection of 
co - processor instructions . For example , the instruction 
sequence determined at 509 is utilized by a control unit , such 
as control unit 101 of FIG . 1 , and / or by one or more 
sequencers to issue the corresponding co - processor instruc 
tions to a computational array such as matrix processor 107 
of FIG . 1 , a vector computational unit such as vector engine 
111 of FIG . 1 , and / or a post - processing unit such as post 
processing unit 113 of FIG . 1 . In some embodiments , the 
functionality of one or more sequencers is performed by a 
control unit . For example , in some embodiments , the control 
unit includes an execute sequencer , memory access sequenc 
ers , network sequencers , and / or vector engine sequencers , 
among others . 
[ 0073 ] FIG . 6A is a flow diagram illustrating an embodi 
ment of a process for the running execution of a vector 
computational unit . The process of FIG . 6A may be per 
formed by a vector computational unit to process elements 
of a vector in parallel . In various embodiments , a vector 
computational unit is vector engine 111 , 211 , 311 , and / or 
vector computational unit 401 of FIGS . 1 , 2 , 3 , and 4A , 
respectively . In some embodiments , the process of FIG . 6A 
is initiated by a control unit such as control unit 101 of FIG . 
1 . In various embodiments , the transition between the steps 
of the process in FIG . 6A is performed by a control logic of 
the vector computational unit such as vector engine control 
logic 423 of FIG . 4A . 
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[ 0074 ] At 601 , a vector engine instruction is retrieved . In 
various embodiments , a vector engine instruction is a vector 
computational unit instruction and specifies a plurality of 
component instructions . For example , an instruction triad is 
a single vector computational unit instruction specifying up 
to three component instructions . An example instruction 
triad includes a load operation , an arithmetic logic unit 
operation , and a store operation as a single instruction . At 
601 , once the instruction is retrieved , the process continues 
to both 603 and 605 . 
[ 0075 ] At 603 , a determination is made as to whether 
additional instructions are pending . For example , the next 
vector engine instruction may be available and ready for 
retrieving . As another example , an instruction buffer for 
caching pending instructions may be empty and requires 
retrieving and / or waiting for the next available instruction . 
In some embodiments , the availability of additional instruc 
tions is based on inspecting a pointer referencing the last 
valid instruction in the instruction buffer . Processing pro 
ceeds to step 609 in response to no available additional 
instructions . Processing proceeds back to 601 in response to 
the availability of one or more additional instructions . 
[ 0076 ] . At 605 , the vector engine instruction retrieved at 
601 is decoded . In various embodiments , a single vector 
engine instruction specifies one or more component instruc 
tions . In various embodiments , the instruction and the com 
ponent instructions are decoded . For example , an instruction 
triad containing a load , an arithmetic logic unit , and a store 
component instruction is decoded into the separate compo 
nent operations . In some embodiments , the decoding deter 
mines both the opcode and the arguments corresponding to 
the opcode for each component operation . As one example , 
a load component instruction contains both the opcode 
corresponding to a byte vector dequeue operation and the 
corresponding destination vector register to store the vector 
of bytes as a result of the dequeue . As another example , an 
add component instruction contains both the opcode corre 
sponding to a signed 16 - bit add operation and the corre 
sponding vector registers for the source and destination 
arguments . 
100771 At 607 , the instruction decoded at 605 is executed . 
In some embodiments , a single vector engine instruction , 
which specifies multiple component instructions , is executed 
by the processing elements of the vector computational unit . 
For example , a vector of processing elements executes the 
single vector engine instruction decoded at 605 . In some 
embodiments , each of the component instructions of the 
single vector engine instruction is further executed in par 
allel by each of the processing elements . For example , for 
each processing element , a load instruction and an arithme 
tic logic unit instruction may be executed in parallel . In 
some embodiments , a load instruction , an arithmetic logic 
unit instruction , and a store instruction may be executed in 
parallel . For example , the following component operations 
are performed in parallel by each processing cell of the 
vector engine : a vector of input data is loaded from an input 
accumulator into a vector register , a floating point multiply 
operation is performed on two different vector registers by 
an arithmetic logic unit ( ALU ) , and a vector of 16 - bit 
elements is stored from a vector register to memory . In 
various embodiments , once the processing elements have 
finished execution of component instructions , the processing 
for the vector engine instruction is complete . 

[ 0078 ] At 609 , the vector computational unit waits for the 
next instruction . For example , the vector computational unit 
waits until an instruction buffer for caching pending instruc 
tions contains a valid instruction to be executed . As another 
example , the vector computational unit waits until the next 
instruction is received from memory and made available to 
the vector computational unit . In some embodiments , the 
vector computational unit halts at 609 pending the avail 
ability of an additional instruction . In various embodiments , 
the vector computational unit may respond to interrupts at 
609 while waiting for an additional instruction . In response 
to the arrival of an additional instruction , processing con 
tinues back to 601 . 
[ 0079 ] FIG . 6B is a flow diagram illustrating an embodi 
ment of a process for processing vector data by a vector 
computational unit . For example , FIG . 6B illustrates the 
process applied to vector data received by a vector compu 
tational unit from an input source such as a computational 
array and / or a first - in - first - out ( FIFO ) queue . In some 
embodiments , the process of FIG . 6B illustrates the steps 
performed by a vector computational unit for performing a 
vector operation on a vector input to compute a vector result . 
In various embodiments , the process of FIG . 6B utilizes a 
plurality of processing elements of a vector computational 
unit to perform processing on elements of a vector in 
parallel . In various embodiments , vector computational unit 
is vector engine 111 , 211 , 311 , and / or vector computational 
unit 401 of FIGS . 1 , 2 , 3 , and 4A , respectively . 
100801 At 651 , a load operation is decoded and issued . In 
some embodiments , a load operation is required to receive 
data into a vector computational unit . For example , in some 
embodiments , a dequeue operation is a load operation that 
dequeues a vector of data elements from a computational 
array to be received by the processing elements of the vector 
computational unit . In various embodiments , the load opera 
tion may be one of multiple component instructions that 
make up a single vector computational unit instruction . The 
decoding of the load operation determines the specific type 
of load operation and the appropriate operations . For 
example , various load operations exist to load different sized 
vector elements into different specified vector registers . At 
651 , the load operation is decoded and issued to initiate the 
receiving of input data such as the dequeuing of a vector of 
data results from a first - in - first - out ( FIFO ) queue . 
[ 0081 ] At 653 , the vector computational unit receives 
input data in the form of a vector as a result of the load 
operation issued at 651 . For example , the vector computa 
tion unit receives a vector of input data elements from a 
computational array , such as matrix processor 107 of FIG . 1 , 
a first - in - first - out ( FIFO ) queue , such as vector engine input 
queue 207 of FIG . 2 , or other appropriate data source . In 
some embodiments , the input data is stored in an input 
buffer . In some embodiments , the input buffer utilizes a set 
of flip - flops and / or one or more accumulators to store the 
input data . An input buffer the size of the input vector may 
be utilized to store the input data so that it can be loaded into 
one or more vector registers at step 655 . 
[ 0082 ] At 655 , vector data received at 653 is loaded into 
the appropriate registers . For example , the vector data read 
at 653 is loaded into the vector registers designated by the 
load instruction . In some embodiments , register aliasing is 
used to determine how data is loaded into a vector register . 
For example , data may be loaded into the same register ' s 
memory location but aligned to byte , half - word , or word 
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boundaries based on the instruction and aliased registers 
utilized . In some embodiments , the loading of vector data 
into vector registers utilizes a bit mask , such as a vector bit 
mask , to determine which bytes of a vector to load into 
which register memory locations . For example , a 96 - bit 
mask may be utilized to determine which elements of a 
vector register should receive data . 
10083 ] At 657 , a determination is made on whether addi 
tional data is needed . For example , based on the current 
vector computational unit instruction , additional data may 
be needed before performing an arithmetic logic unit ( ALU ) 
operation . In response to not needing additional data , pro 
cessing continues to 661 . As an example , processing con 
tinues to 661 in the event the current vector computational 
unit instruction includes an ALU component operation ( such 
as an add operation ) that is not a no - op operation . In 
response to needing additional data , for example , a load 
operation is pending and no ALU operation is pending , 
processing continues to 659 . In some embodiments , an 
instruction triad may replace an ALU operation with a no - op 
indicating that an ALU operation should not be performed 
for the current instruction . 
[ 0084 ] At 659 , additional data is loaded into the vector 
computational unit for processing . For example , additional 
input data , such as a vector of input weights , may be loaded 
by reading memory , receiving the result of a matrix proces 
sor , dequeuing a first - in - first - out ( FIFO ) queue , or other 
appropriate technique . In some embodiments , additional 
data may be loaded by reading a memory such as a static 
random access memory ( SRAM ) . In various embodiments , 
additional components such as a read buffer may be utilized 
to synchronize the loading of data and / or to account for read 
delays and latency . In various embodiments , the data loaded 
at 659 may be a vector of input data , such as a vector of 
weight inputs . 
[ 0085 ] At 661 , a vector arithmetic logic unit ( ALU ) opera 
tion is performed . In various embodiments , vector ALU 
operations include vector operations for add ( signed and 
unsigned ) , subtract ( signed and unsigned ) , multiply , abso 
lute value , and logical operators , among others . Vector ALU 
operations may be performed on different operand sizes . 
Example operand sizes include 8 - bit , 16 - bit , 32 - bit , and 
floating point values . In some embodiments , the different 
operand sizes are determined based on register aliasing 
and / or the opcode of the operation . For example , a vector 
add operation on 8 - bit operands utilizes 8 - bit vector regis 
ters . As explained in more detail with respect to FIGS . 4A 
and 4B , register aliasing allows the same memory location 
to be referenced using different aliases . For example , a 
32 - bit block of memory can be referenced as a single 4 - byte 
operand , two 2 - byte operands , or four 1 - byte operands 
depending on the desired result . In various embodiments , 
each processing element of the vector computational unit 
performs the same ALU operation ( e . g . , add , subtract , mul 
tiply , etc . ) in parallel with the other processing elements . In 
some embodiments , the output result is a quantized version 
of the ALU result . For example , the output result is a 
quantized version that requires fewer bits to represent than 
the ALU result . In some embodiments , the ALU result is 
calculated using a result represented using fewer bits than 
the input operands . For example , input operands may be 
4 - bytes each and an output result may be 1 - byte in size . 
10086 ] At 663 , the vector result of the arithmetic logic unit 
( ALU ) operation performed at 661 is written out of the 

vector computational unit . In some embodiments , the vector 
result is written out utilizing an output buffer that allows 
processing to continue for the next ALU operation in the 
event the output bus is not available to receive data . In some 
embodiments , the vector output result is transferred to a 
post - processing unit such as post - processing units 115 , 215 , 
and / or 315 of FIGS . 1 , 2 , and 3 , respectively . For example , 
the result of performing an ALU operation is written to a 
post - processing unit for performing post - processing pooling 
operations . In some embodiments , the output vector result is 
written to memory such as static random access memory 
( SRAM ) . In various embodiments , the output is written out 
as a vector of elements such as a 96 - element vector with 
each element having the size of 1 byte . 
[ 0087 ] FIG . 7 is a block diagram illustrating an embodi 
ment of an encoding format for a vector computational unit 
instruction . In the example shown , vector computational unit 
instruction 710 depicts the encoding of multiple component 
instructions specified by a single instruction . Vector com 
putational unit instruction 740 further details the format of 
each of the multiple component instructions specified by a 
single instruction . Vector computational unit instruction 710 
is an encoded instruction triad and includes load operation 
711 , arithmetic logic unit ( ALU ) operation 713 , and store 
operation 715 . Vector computational unit instruction 740 
includes fields : opcode 741 , register 743 , opcode 751 , reg 
isters 753 , opcode configuration field 755 , immediate field 
757 , opcode 761 , and register 763 . The fields for component 
instructions ( corresponding to a load operation , ALU opera 
tion , and store operation ) depicted by vector computational 
unit instruction 710 map to vector computational unit 
instruction 740 . Vector computational unit instruction 740 
includes an encoded load operation ( opcode 741 and register 
743 ) , arithmetic logic unit operation ( opcode 751 , registers 
753 , opcode configuration field 755 , and immediate field 
757 ) , and store operation ( opcode 761 and register 763 ) . 
[ 0088 ] In some embodiments , a vector computational unit 
instruction is an instruction triad specifying three component 
instructions . For example , a load operation , arithmetic logic 
unit ( ALU ) operation , and store operation may be bundled 
into a single instruction using a 128 - bit format . In various 
embodiments , a larger or smaller bit format may be utilized 
to bundle the three component instructions as appropriate . In 
some embodiments , load and store operations are encoded 
into 13 bits and ALU operations are encoded into 64 bits . In 
various embodiments , any remaining bits not used by the 
bundled load , store , and ALU operations are padding bits . In 
some embodiments , opcodes are encoded into 8 bits , regis 
ters are encoded into 5 bits , and immediate fields are 
encoded into 32 bits . In various embodiments , different 
length encodings may be utilized as appropriate and are 
based on the instruction size , number of supported vector 
operations , number of registers , vector size , and / or other 
appropriate factors . In some scenarios , a no - op operation is 
used when one or more of the component instructions are not 
utilized . 
[ 0089 ] In the example shown , the encoded load operation 
of vector computational unit instruction 740 includes opcode 
741 and register 743 . Opcode 741 corresponds to a vector 
load operation and register 743 is the corresponding desti 
nation vector register for the load operation . For example , 
opcode 741 may be used to store the opcode for a dequeue 
operation that loads data and register 743 is the destination 
register for storing the loaded data . In various embodiments , 
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the load operation is used to load a vector of input data into 
a vector register for processing by a vector computational 
unit . In some embodiments , opcode 741 is an 8 - bit field and 
register 743 is a 5 - bit field . 
[ 0090 ] In the example shown , the encoded store operation 
of vector computational unit instruction 740 includes opcode 
761 and register 763 . Opcode 761 corresponds to a vector 
store operation and register 763 is the corresponding source 
vector register for which the store operation should read a 
vector of data from . For example , opcode 761 may be used 
to store the opcode for a store operation that stores data from 
register 763 to external memory such as static random 
access memory ( SRAM ) . In some embodiments , the start 
address of the memory used for storing is maintained by an 
external sequencer or control unit using a write pointer to 
reference a memory location . In some embodiments , the 
store operation is used to write a vector of data to an output 
data bus . In some embodiments , opcode 761 is an 8 - bit field 
and register 763 is a 5 - bit field . 
10091 ) In the example shown , the encoded arithmetic logic 
unit ( ALU ) operation includes opcode 751 , registers 753 , 
opcode configuration field 755 , and immediate field 757 . 
Opcode 751 is used to encode an ALU opcode . For example , 
ALU opcodes may include opcodes that correspond to 
vector operations for add ( signed and unsigned ) , subtract 
( signed and unsigned ) , multiply , absolute value , and logical 
operators , among others . Depending on the vector ALU 
operation , the operation may utilize fields : registers 753 , 
opcode configuration field 755 , and immediate field 757 . In 
some embodiments , registers 753 specifies up to four vector 
registers including three source registers and one destination 
register . In some embodiments , registers 753 is a 20 - bit field 
and utilizes 5 bits for each register . 
[ 0092 ] In some embodiments , an encoded arithmetic logic 
unit ( ALU ) operation includes opcode configuration field 
755 that is utilized by certain ALU operations . In some 
embodiments , opcode configuration field 755 is a 5 - bit field 
and includes a register size field ( 2 - bits ) , a mask bit ( 1 - bit ) , 
and an immediate valid bit ( 1 - bit ) . For example , in some 
scenarios , the value stored in the register size field ( 2 - bits ) 
may be used to specify the size of the registers ( e . g . , 8 - bits , 
16 - bits , or 32 - bits ) . As additional examples , a mask bit 
( 1 - bit ) may be utilized to process immediate field 757 as a 
bit mask and an immediate valid bit ( 1 - bit ) may be utilized 
to identify the validity of immediate field 757 . In various 
embodiments , immediate field 757 is a 32 - bit field that is 
utilized for ALU operations that require an immediate field . 
For example , a vector move operation may be configured to 
move a 32 - bit value from immediate field 757 to a destina 
tion vector register . 
[ 0093 ] In some embodiments , a vector computational unit 
supports a vector mask move instruction ( not shown ) to load 
a vector bit mask into a vector mask register . In some 
embodiments , a vector mask move instruction includes a 
corresponding opcode field , a destination register field , and 
an immediate field . As an example , the vector mask move 
loads a vector bit mask stored in the immediate field to the 
vector mask register . In some embodiments , the size of the 
vectors ( e . g . , 96 elements wide ) supported by the vector 
computational unit requires a large enough immediate field 
( e . g . , 96 - bits ) to store the bit mask . In some embodiments , 
the vector mask move instruction is not restricted to the 
encoding formats of vector computational unit instructions 
710 and 740 . For example , based on the size of the imme 

diate field , the vector mask move may not be bundled with 
other component instructions . 
10094 ) In various embodiments , the component instruc 
tions of vector computational unit instructions are bundled 
together using the process of FIG . 5 . In some embodiments , 
the encoding format of FIG . 7 is utilized by a vector 
computational unit such as vector engine 111 , 211 , 311 , 
and / or vector computational unit 401 of FIGS . 1 , 2 , 3 , and 
4A , respectively . In some embodiments , a vector computa 
tional unit instruction is issued to a vector computational 
unit by a sequencer of a microprocessor system or control 
unit containing a sequencer . 
10095 ] FIG . 8 is a flow diagram illustrating an embodi 
ment of a process for performing a single vector computa 
tional unit instruction by a vector computational unit . The 
process of FIG . 8 may be performed by a vector computa 
tional unit on elements of a vector in parallel utilizing the 
processing elements of a vector computational unit . In some 
embodiments , the process of FIG . 8 is performed by a vector 
computational unit such as vector engine 111 , 211 , 311 , 
and / or vector computational unit 401 of FIGS . 1 , 2 , 3 , and 
4A , respectively . 
10096 ] . At 801 , a vector computational unit instruction is 
fetched . In some embodiments , the instruction is fetched 
from an instruction buffer and / or command queue . In vari 
ous embodiments , the instruction buffer includes one or 
more pointers to reference the current instruction to be 
performed . In various embodiments , the instruction buffer 
acts as a cache of vector computational unit instructions . 
0097 ] At 821 , the vector computational unit instruction is 
decoded . For example , a vector computational unit instruc 
tion that is an instruction triad is decoded into its three 
component instructions . In various embodiments , the argu 
ments and fields utilized by each component instruction are 
decoded . For example , vector registers specified by a reg 
isters field , such as registers 753 of FIG . 7 , are decoded into 
source and destination registers . 
[ 0098 ] At 831 , the component instructions are issued . In 
some embodiments , the issuing of component instructions 
includes determining whether a resource and / or data hazards 
are present . In the event hazards are present , in some 
embodiments , the vector computational unit waits for the 
hazard to be resolved . For example , in the event of a 
resource hazard caused by a load operation in the previous 
clock cycle , the vector computational unit waits one or more 
clock cycles for the load to complete and for the resource to 
be available . 
[ 0099 ] In some embodiments , the multiple component 
instructions are issued together and executed in parallel . For 
example , the load operation , arithmetic logic unit ( ALU ) 
operation , and store operation of an instruction triad are 
executed together and during the same clock cycle . In the 
scenario where the component instructions are executed 
together , each of the steps corresponding to executing a load 
operation ( step 845 ) , an ALU operation ( step 855 ) , and a 
store operation ( step 865 ) along with corresponding no - op 
alternatives ( steps 843 , 854 , and 863 ) are initiated in the 
same clock cycle and execution proceeds in parallel . 
0100 ] . In some embodiments , the different component 
instructions are executed with staggered starts . For example , 
in some embodiments , the load operation is executed first , 
followed by the arithmetic logic unit ( ALU ) operation , and 
then the store operation . In a staggered scenario , the ALU 
operation of a first vector computational unit instruction may 
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execute in parallel with the load operation of the next vector 
computational unit instruction . 
10101 ] In various embodiments , different operations , 
including different arithmetic logic unit ( ALU ) operations , 
take one or more clock cycles to complete and there is no 
guarantee that the different operations complete by the end 
of the same clock cycle . In some embodiments , one or more 
of the fetch ( 801 ) , decode ( step 821 ) , and issue ( step 831 ) 
steps may be performed during the same instruction cycle . 
[ 0102 ] At 841 , a determination is made on whether the 
vector computational unit instruction includes a load opera 
tion . For example , in some scenarios , a load operation may 
be replaced with a no - op to indicate that no load operation 
should be performed . In response to a no - op , processing 
continues to 843 . In the event that a load operation exists , 
processing continues to 845 . 
[ 0103 ] At 843 , a no - op is processed and no load operation 
is performed . For example , a load instruction was not 
present in the instruction at 841 and instead the opcode for 
a no - op was used . 
[ 0104 ] At 845 , a load operation is executed by the vector 
computational unit . For example , a dequeue operation to 
load an input vector from a first - in - first - out queue , such as 
vector engine input queue 207 , is performed . 
[ 0105 ] At 851 , a determination is made on whether the 
vector computational unit instruction includes an arithmetic 
logic unit ( ALU ) operation . For example , in some scenarios , 
an ALU operation may be replaced with a no - op to indicate 
that no ALU operation should be performed . In response to 
a no - op , processing continues to 853 . In the event that an 
ALU operation exists , processing continues to 855 . 
[ 0106 At 853 , a no - op is processed and no arithmetic 
logic unit ( ALU ) operation is performed . For example , an 
ALU instruction was not present in the instruction at 851 and 
instead the opcode for a no - op was used . 
[ 0107 ] At 855 , an arithmetic logic unit ( ALU ) operation is 
executed by the vector computational unit . For example , in 
response to a vector add operation , the arithmetic logic unit 
of a vector computational unit performs a vector add opera 
tion to add the contents of two source vector registers and 
store the result in a destination vector register . In some 
embodiments , the arithmetic logic unit of the vector com 
putational unit is arithmetic logic units ( ALUS ) 427 of FIG . 
4A . 
[ 0108 ] At 861 , a determination is made on whether the 
vector computational unit instruction includes a store opera 
tion . For example , in some scenarios , a store operation may 
be replaced with a no - op to indicate that no store operation 
should be performed . In response to a no - op , processing 
continues to 863 . In the event that a store operation exists , 
processing continues to 865 . 
[ 0109 ] At 863 , a no - op is processed and no store operation 
is performed . For example , a store instruction was not 
present in the instruction at 861 and instead the opcode for 
a no - op was used . 
[ 0110 ] At 865 , a store operation is executed by the vector 
computational unit . For example a store operation to store 
the vector data in a vector register to memory is performed . 
[ 0111 ] FIG . 9 is a diagram illustrating an exemplary 
instruction cycle of a vector computational unit . The process 
of FIG . 9 illustrates an example ordering and sequence of 
three vector computational unit instructions performed in 
parallel but with staggered starts . In some embodiments , the 
exemplary instruction cycle of FIG . 9 is utilized by vector 

engine 111 , 211 , 311 , and / or vector computational unit 401 
of FIGS . 1 , 2 , 3 , and 4A , respectively . In the example of FIG . 
9 , the component instructions bundled as a single instruction 
are executed with staggered starts such that a load operation 
is executed first , followed by an arithmetic logic unit ( ALU ) 
operation , and then a store operation . In some embodiments , 
sequential vector computational unit instructions are pipe 
lined but the component instructions are executed in parallel 
and do not follow the staggered starts depicted in FIG . 9 . 
[ 0112 ] In the example shown , a first instruction cycle 910 
includes fetch step 911 , a decode step 921 , an issue step 931 , 
a load execution step 941 , an arithmetic logic unit ( ALU ) 
execution step 951 , and a store execution step 961 corre 
sponding to the first vector computational unit instruction . A 
second instruction cycle 920 includes fetch step 923 , a 
decode step 933 , an issue step 943 , a load execution step 
953 , an arithmetic logic unit ( ALU ) execution step 963 , and 
a store execution step 973 corresponding to the second 
vector computational unit instruction . A third instruction 
cycle 930 includes fetch step 935 , a decode step 945 , an 
issue step 955 , a load execution step 965 , an arithmetic logic 
unit ( ALU ) execution step 975 , and a store execution step 
985 corresponding to the third vector computational unit 
instruction . In some embodiments , the dotted vertical lines 
are clock cycle boundaries . In various embodiments , the 
steps within the same clock cycle boundaries are started 
during the same clock cycle . 
[ 0113 ] In some embodiments , the start of instruction 
cycles are staggered by one stage . For example , first instruc 
tion cycle 910 is one stage ahead in processing compared to 
second instruction cycle 920 , and two stages ahead of third 
instruction cycle 930 . During any given clock cycle , differ 
ent vector computational unit instructions can be utilizing 
the hardware resources associated with the different stages : 
fetch , decode , issue , load execution , arithmetic logic unit 
( ALU ) execution , and store execution . As an example , issue 
stage 931 , decode stage 933 , and fetch stage 935 of first , 
second , and third instruction cycles 910 , 920 , and 930 , 
respectively , execute during the same clock cycle . As 
another example , store execution step 961 , arithmetic logic 
unit ( ALU ) execution step 963 , and load execution step 965 
of first , second , and third instruction cycles 910 , 920 , and 
930 , respectively , execute during the same clock cycle . 
[ 0114 ] In some embodiments , the instruction cycle of a 
vector computational unit achieves a throughput of one 
vector computational unit instruction per clock cycle . In 
some embodiments , the fetch , decode , and / or issue steps are 
compressed into a single clock cycle . For example , in some 
embodiments , an instruction buffer is utilized to minimize 
fetch times and a fetch and decode step are performed 
together . In some embodiments , each stage of the instruction 
cycle may take one or more clock cycles to complete . In 
some embodiments , the stages are themselves pipelined . For 
example , in the event an execution step takes more than one 
cycle to complete , an execution step may be pipelined to 
complete over multiple clock cycles . In some embodiments , 
multiple execution steps may be processed in parallel in a 
pipelined manner and each execution step may correspond 
to a different vector computational unit instruction . In some 
embodiments , fetch steps 911 , 923 , and 935 correspond to 
step 801 of FIG . 8 , decode steps 921 , 933 , and 945 corre 
spond to step 821 of FIG . 8 , issue steps 931 , 943 , and 955 
correspond to step 831 of FIG . 8 , load execution steps 941 , 
953 and 965 correspond to step 845 of FIG . 8 , arithmetic 
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logic unit ( ALU ) execution steps 951 , 963 , and 975 corre 
spond to step 855 of FIG . 8 , and store execution steps 961 , 
973 , and 985 correspond to step 865 of FIG . 8 . 
[ 0115 ] In an alternative embodiment ( not shown ) , the 
fetch , decode , and issues stages of an instruction cycle are 
performed in the same order as FIG . 9 . In contrast with the 
exemplary embodiment of FIG . 9 , the load , arithmetic logic 
unit ( ALU ) , and store execution steps are executed together 
and in parallel during the same clock cycle . For example , 
load execution step 941 , ALU execution step 951 , and store 
execution step 961 of the same vector computational unit 
instruction are executed together . 
[ 0116 ] FIG . 10 is a block diagram illustrating an embodi 
ment of a computation unit of a computational array . In the 
example shown , computation unit 1000 includes input val 
ues weight 1002 , data 1004 , and Resultin 1006 ; signals 
ClearAcc signal 1008 , Clock signal 1010 , ResultEnable 
signal 1012 , ResultCapture signal 1014 , and ShiftEn signal 
1016 ; components accumulator 1024 , multiplexer 1026 , 
shadow register 1028 , multiplier 1030 , and adder 1032 ; 
logic 1034 , 1036 , and 1038 ; and output value ResultOut 
1050 . In some embodiments , logic 1034 , 1036 , and 1038 are 
AND gates . In some embodiments , additional signals are 
included as appropriate . In various embodiments , the com 
putation unit of FIG . 10 is repeated for each of the plurality 
of computation units , such as computation unit 109 , of a 
computation array such as matrix processor 107 of FIG . 1 . 
Computation unit 1000 may be utilized to implement com 
putational operations in parallel . In various embodiments , 
each computation unit of a computational array performs 
computations in parallel with the other computation units . In 
various embodiments , computation unit 1000 is a sub - circuit 
of a matrix processor that includes the functionality for 
performing one or more multiply , add , accumulate , and / or 
shift operations . For example , computation unit 1000 may 
be a sub - circuit that includes the functionality for perform 
ing a dot - product operation . In various embodiments , com 
putation unit 1000 is computation unit 109 of FIG . 1 and / or 
computation units 209 , and / or 221 - 229 of FIG . 2 . 
[ 0117 ] In some embodiments , Clock signal 1010 is a clock 
signal received by computation unit 1000 . In various 
embodiments , each computation unit of the computational 
array receives the same clock signal and the clock signal is 
utilized to synchronize the processing of each computation 
unit with the other computation units . 
[ 0118 ] In the example shown , multiplier 1030 receives and 
performs a multiplication operation on the input values data 
1004 and weight 1002 . The output of multiplier 1030 is fed 
to adder 1032 . Adder 1032 receives and performs an addi 
tion on the output of multiplier 1030 and the output of logic 
1034 . The output of adder 1032 is fed to accumulator 1024 . 
In some embodiments , input values data 1004 and weight 
1002 are lines that cross computation units and feed the 
corresponding data and / or weight to neighboring computa 
tion units . For example , in some embodiments , data 1004 is 
fed to all computation units in the same column and weight 
1002 is fed to all computation units in the same row . In 
various embodiments , data 1004 and weight 1002 corre 
spond to input elements fed to computation unit 1000 from 
a data input 103 and a weight input 105 , respectively . In 
various embodiments , data 1004 and weight 1002 corre 
spond to input elements fed to computation unit 1000 from 
a data hardware data formatter and a weight hardware data 
formatter , respectively . 

[ 0119 ] In some embodiments , ClearAcc signal 1008 clears 
the contents of accumulator 1024 . As an example , accumu 
lation operations can be reset by clearing accumulator 1024 
and used to accumulate the result of multiplier 1030 . In 
some embodiments , Clear Acc signal 1008 is used to clear 
accumulator 1024 for performing a new dot - product opera 
tion . For example , elements - wise multiplications are per 
formed by multiplier 1030 and the partial - dot - product 
results are added using adder 1032 and accumulator 1024 . 
f0120 ] In various embodiments , accumulator 1024 is an 
accumulator capable of accumulating the result of adder 
1032 and indirectly the result of multiplier 1030 . For 
example , in some embodiments , accumulator 1024 is con 
figured to accumulate the result of multiplier 1030 with the 
contents of accumulator 1024 based on the status of Clear 
Acc signal 1008 . As another example , based on the status of 
ClearAcc signal 1008 , the current result stored in accumu 
lator 1024 may be ignored by adder 1032 . In the example 
shown , accumulator 1024 is a 32 - bit wide accumulator . In 
various embodiments , accumulator 1024 may be sized dif 
ferently , e . g . , 8 - bits , 16 - bits , 64 - bits , etc . , as appropriate . In 
various embodiments , each accumulator of the plurality of 
computation units of a computational array is the same size . 
In various embodiments , accumulator 1024 may accumulate 
and save data , accumulate and clear data , or just clear data . 
In some embodiments , accumulator 1024 may be imple 
mented as an accumulation register . In some embodiments , 
accumulator 1024 may include a set of arithmetic logic units 
( ALUS ) that include registers . 
10121 ] In some embodiments , ResultEnable signal 1012 is 
activated in response to a determination that data 1004 is 
valid . For example , ResultEnable signal 1012 may be 
enabled to enable processing by a computation unit such as 
processing by multiplier 1030 and adder 1032 into accumu 
lator 1024 . 
[ 0122 ] In some embodiments , ResultCapture signal 1014 
is utilized to determine the functionality of multiplexer 
1026 . Multiplexer 1026 receives as input ResultIn 1006 , 
output of accumulator 1024 , and ResultCapture signal 1014 . 
In various embodiments , ResultCapture signal 1014 is used 
to enable either ResultIn 1006 or the output of accumulator 
1024 to pass through as the output of multiplexer 1026 . In 
some embodiments , multiplexer 1026 is implemented as an 
output register . In some embodiments , ResultIn 1006 is 
connected to a computation unit in the same column as 
computation unit 1000 . For example , the output of a neigh 
boring computation unit is fed in as an input value Resultin 
1006 to computation unit 1000 . In some embodiments , the 
input of a neighboring computation unit is the computation 
unit ' s corresponding ResultOut value . 
[ 0123 ] In some embodiments , shadow register 1028 
receives as input the output of multiplexer 1026 . In some 
embodiments , shadow register 1028 is configured to receive 
the output of accumulator 1024 via multiplexer 1026 
depending on the value of ResultCapture signal 1014 . In the 
example shown , the output of shadow register 1028 is output 
value ResultOut 1050 . In various embodiments , once a 
result is inserted into shadow register 1028 , accumulator 
1024 may be used to commence new calculations . For 
example , once the final dot - product result is stored in 
shadow register 1028 , accumulator 1024 may be cleared and 
used to accumulate and store the partial result and eventually 
the final result of a new dot - product operation on new weight 
and data input values . In the example shown , shadow 
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register 1028 receives a signal ShiftEn signal 1016 . In 
various embodiments , ShiftEn signal 1016 is used to enable 
or disable the storing of values in the shadow register 1028 . 
In some embodiments , ShiftEn signal 1016 is used to shift 
the value stored in shadow register 1028 to output value 
ResultOut 1050 . For example , when ShiftEn signal 1016 is 
enabled , the value stored in shadow register 1028 is shifted 
out of shadow register 1028 as output value ResultOut 1050 . 
In some embodiments , ResultOut 1050 is connected to a 
neighboring computation unit ' s input value Resultin . In 
some embodiments , the last cell of a column of computation 
units is connected to the output of the computational array . 
In various embodiments , the output of the computational 
array feeds into a vector engine such as vector engine 111 of 
FIG . 1 for vector processing . For example , the output 
ResultOut 1050 of a computation cell such as computation 
cell 109 of FIG . 1 may be fed into a processing element of 
a vector engine such as processing element 113 of vector 
engine 111 of FIG . 1 . 
[ 0124 ] In the example shown , shadow register 1028 is 
32 - bits wide . In various embodiments , shadow register 1028 
may be sized differently , e . g . , 8 - bits , 16 - bits , 64 - bits , etc . , as 
appropriate . In various embodiments , each shadow register 
of the plurality of computation units of a computational 
array is the same size . In various embodiments , shadow 
register 1028 is the same size as accumulator 1024 . In 
various embodiments , the size of multiplexer 1026 is based 
on the size of accumulator 1024 and / or shadow register 1028 
( e . g . , the same size or larger ) . 
[ 0125 ] In some embodiments , logic 1034 , 1036 , and 1038 
receive signals , such as control signals , to enable and / or 
configure the functionality of computation unit 1000 . In 
various embodiments , logic 1034 , 1036 , and 1038 are imple 
mented using AND gates and / or functionality corresponding 
to an AND gate . For example , as described above , logic 
1034 receives ClearAcc signal 1008 and an input value 
corresponding to the value stored in accumulator 1024 . 
Based on ClearAcc signal 1008 , the output of logic 1034 is 
determined and fed to adder 1032 . As another example , logic 
1036 receives ResultEnable signal 1012 and Clock signal 
1010 . Based on ResultEnable signal 1012 , the output of 
logic 1036 is determined and fed to accumulator 1024 . As 
another example , logic 1038 receives ShiftEn signal 1016 
and Clock signal 1010 . Based on ShiftEn signal 1016 , the 
output of logic 1038 is determined and fed to shadow 
register 1028 . 
[ 0126 ] In various embodiments , computation units may 
perform a multiplication , an addition operation , and a shift 
operation at the same time , i . e . , within a single cycle , 
thereby doubling the total number of operations that occur 
each cycle . In some embodiments , results are moved from 
multiplexer 1026 to shadow register 1028 in a single clock 
cycle , i . e . , without the need of intermediate execute and save 
operations . In various embodiments , the clock cycle is based 
on the signal received at Clock signal 1010 . 
[ 0127 ] In various embodiments , input values weight 1002 
and data 1004 are 8 - bit values . In some embodiments , 
weight 1002 is a signed value and data 1004 is unsigned . In 
various embodiments , weight 1002 and data 1004 may be 
signed or unsigned , as appropriate . In some embodiments , 
ResultIn 1006 and ResultOut 1050 are 32 - bit values . In 
various embodiments ResultIn 1006 and ResultOut 1050 are 
implemented using a larger number of bits than input 
operands weight 1002 and data 1004 . By utilizing a large 

number of bits , the results of multiplying multiple pairs of 
weight 1002 and data 1004 , for example , to calculate a 
dot - product result , may be accumulated without overflowing 
the scalar result . 
[ 0128 ] In some embodiments , computation unit 1000 gen 
erates an intermediate and / or final computation result in 
accumulator 1024 . The final computation result is then 
stored in shadow register 1028 via multiplexer 1026 . In 
some embodiments , multiplexer 1026 functions as an output 
register and store the output of accumulator 1024 . In various 
embodiments , the final computation result is the result of a 
convolution operation . For example , the final result at Resul 
tOut 1050 is the result of convolution between a filter 
received by computation unit 1000 as input values using 
weight 1002 and a two - dimensional region of sensor data 
received by computation unit 1000 as input values using 
data 1004 . 
101291 . As an example , a convolution operation may be 
performed using computation unit 1000 on a 2x2 data input 
matrix [ do dl ; d2 d3 ] corresponding to a region of sensor 
data and a filter corresponding to a 2x2 matrix of weights 
[ w0 wl ; w2 w3 ] . The 2x2 data input matrix has a first row 
[ do d1 ] and a second row [ d2 d3 ] . The filter matrix has a first 
row [ wo wl ] and a second row [ w2 w3 ] . In various 
embodiments , computation unit 1000 receives the data 
matrix via data 1004 as a one - dimensional input vector [ d0 
di d2 d3 ] one element per clock cycle and weight matrix via 
weight 1002 as a one - dimensional input vector [ w0 wl w2 
w3 ] one element per clock cycle . Using computation unit 
1000 , the dot product of the two input vectors is performed 
to produce a scalar result at ResultOut 1050 . For example , 
multiplier 1030 is used to multiply each corresponding 
element of the input weight and data vectors and the results 
are stored and added to previous results in accumulator 
1024 . For example , the result of element do multiplied by 
element wo ( e . g . , d0 * w0 ) is first stored in cleared accumu 
lator 1024 . Next , element dl is multiplied by element w1 
and added using adder 1032 to the previous result stored in 
accumulator 1024 ( e . g . , d0 * wo ) to compute the equivalent 
of d0 * w0 + d1 * wl . Processing continues to the third pair of 
elements d2 and w2 to compute the equivalent of d0 * w0 + 
d1 * wl + d2 * w2 at accumulator 1024 . The last pair of ele 
ments is multiplied and the final result of the dot product is 
now stored in accumulator 1024 ( e . g . , d0 * w0 + d1 * wl + 
d2 * w2 + d3 * w3 ) . The dot - product result is then copied to 
shadow register 1028 . Once stored in shadow register 1028 , 
a new dot - product operation may be initiated , for example , 
using a different region of sensor data . Based on ShiftEn 
signal 1016 , the dot - product result stored in shadow register 
1028 is shifted out of shadow register 1028 to ResultOut 
1050 . In various embodiments , the weight and data matrices 
may be different dimensions than the example above . For 
example , larger dimensions may be used . 
[ 0130 ] In some embodiments , a bias parameter is intro 
duced and added to the dot - product result using accumulator 
1024 . In some embodiments , the bias parameter is received 
as input at either weight 1002 or data 1004 along with a 
multiplication identity element as the other input value . The 
bias parameter is multiplied against the identity element to 
preserve the bias parameter and the multiplication result 
( e . g . , the bias parameter ) is added to the dot - product result 
using adder 1032 . The addition result , a dot - product result 
offset by a bias value , is stored in accumulator 1024 and later 
shifted out at ResultOut 1050 using shadow register 1028 . In 
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some embodiments , a bias is introduced using a vector 
engine such as vector engine 111 of FIG . 1 . 
[ 0131 ] Although the foregoing embodiments have been 
described in some detail for purposes of clarity of under 
standing , the invention is not limited to the details provided . 
There are many alternative ways of implementing the inven 
tion . The disclosed embodiments are illustrative and not 
restrictive . 
What is claimed is : 
1 . A microprocessor system , comprising : 
a computational array that includes a plurality of compu 

tation units ; and 
a vector computational unit in communication with the 

computational array . 
2 . The system of claim 1 , wherein the vector computa 

tional unit includes a plurality of processing elements , and 
the processing elements are configured to receive output 
data elements from the computational array and process in 
parallel the received output data elements . 

3 . The system of claim 2 , wherein the processing elements 
process in parallel the received output data elements in 
response to a single processor instruction . 

4 . The system of claim 1 , wherein the computational array 
includes a matrix processor . 

5 . The system of claim 1 , wherein the computational array 
is configured to receive two vector input operands . 

6 . The system of claim 1 , wherein each computation unit 
of the plurality of computation units includes an arithmetic 
logic unit , an accumulator , and a shadow register . 

7 . The system of claim 1 , wherein each computation unit 
of the plurality of computation units is configured to perform 
a multiply operation and an add operation . 

8 . The system of claim 1 , wherein each computation unit 
of the plurality of computation units is configured to perform 
a dot - product component operation . 

9 . The system of claim 1 , wherein each computation unit 
of the plurality of computation units is configured to com 
pute a dot - product result component in parallel in response 
to a single computational array instruction . 

10 . The system of claim 2 , wherein each processing 
element of the plurality of processing elements includes an 
arithmetic logic unit configured to perform arithmetic logic 
unit operations in parallel with other processing elements . 

11 . The system of claim 2 , wherein a notification signal 
identifies that output data elements from the computational 
array are ready for the vector computational unit . 

12 . The system of claim 1 , wherein the computational 
array is configured to operate as a first - in - first - out queue . 

13 . The system of claim 2 , wherein the output data 
elements from the computational array correspond to dot 
product results . 

14 . The system of claim 2 , wherein the output data 
elements from the computational array correspond to con 
volution results performed on image data . 

15 . The system of claim 3 wherein the single processor 
instruction is used to calculate a result of a non - linear 
function . 

16 . The system of claim 15 , wherein the non - linear 
function is a rectified linear unit function or a sigmoid 
function . 

17 . The system of claim 1 , further comprising a post 
processing unit in communication with the vector compu 
tational unit 

18 . The system of claim 17 , wherein the post - processing 
unit is configured to perform a pooling function . 

19 . The system of claim 2 , wherein the received output 
data elements from the computational array are stored in an 
accumulator . 

20 . The system of claim 19 , wherein each processing 
element of the plurality of processing elements is configured 
to access a slice of the accumulator and a slice of one or 
more vector registers . 

21 . The system of claim 2 , wherein the vector computa 
tional unit further includes a plurality of vector registers 
sized to fit the output data elements from the computational 
array . 
22 . A microprocessor system , comprising : 
a computational array that includes a plurality of compu 

tation units , wherein each computation unit of the 
plurality of computation units is configured to perform 
a dot - product component operation in response to a 
single computational array instruction , and 

a vector computational unit in communication with the 
computational array , wherein the vector computational 
unit includes a plurality of processing elements and the 
processing elements are configured to receive output 
data elements from the computational array and process 
in parallel the received output data elements in 
response to a single vector computational unit instruc 
tion . 

23 . The system of claim 22 , further comprising : 
a control unit configured to provide the single computa 

tional array instruction to the computational array and 
the single vector computational unit instruction to the 
vector computational unit . 

24 . The system of claim 23 , wherein the control unit 
synchronizes the output data elements transferred from the 
computational array to the processing elements of the vector 
computational unit . 

25 . The method comprising : 
receiving a single processor instruction for a vector com 

putational unit , wherein the vector computational unit 
is in communication with a computational array and 
includes a plurality of processing elements configured 
to receive output data elements from the computational 
array ; 

receiving the output data elements from the computational 
array , wherein the computational array includes a plu 
rality of computation units ; and 

processing in parallel the received output data elements in 
response to the single processor instruction . 

* * * * * 


