US 20190026250A1

a9y United States

12y Patent Application Publication o) Pub. No.: US 2019/0026250 A1

Das Sarma et al.

43) Pub. Date: Jan. 24, 2019

(54)

(71)
(72)

@

(22)

(63)

(60)

VECTOR COMPUTATIONAL UNIT
Applicant: Tesla, Inc., Palo Alto, CA (US)

Inventors: Debjit Das Sarma, San Jose, CA (US);
Emil Talpes, San Mateo, CA (US);

Peter Joseph Bannon, Woodside, CA

us)
Appl. No.: 15/920,156
Filed: Mar. 13, 2018

Related U.S. Application Data

Continuation-in-part of application No. 15/710,433,
filed on Sep. 20, 2017.

Provisional application No. 62/625,251, filed on Feb.
1, 2018, provisional application No. 62/536,399, filed
on Jul. 24, 2017, provisional application No. 62/536,
399, filed on Jul. 24, 2017.

200
~

Publication Classification

(51) Int. CL
GOGF 15/80 (2006.01)
GOGF 9/30 (2006.01)
GO6N 99/00 (2006.01)
(52) US.CL
CPC ... GOGF 15/8053 (2013.01); GOGF 7/575
(2013.01); GO6N 99/005 (2013.01); GO6F
9/30036 (2013.01)
(57) ABSTRACT

A microprocessor system comprises a computational array
and a vector computational unit. The computational array
includes a plurality of computation units. The vector com-
putational unit is in communication with the computational
array and includes a plurality of processing elements. The
processing elements are configured to receive output data
elements from the computational array and process in par-
allel the received output data elements.

Vector Input

~ 203

221
222
223

224 1
2251

226
227

228
229 1

231
211

- - -

Vector Engme

V¥V VvV VY

Post-Processing Unit

207
A4
e > Control
Unit
201
A

™ 209

: 213

215

Patent Application Publication Jan. 24,2019 Sheet 1 of 12 US 2019/0026250 A1

100
~
~ 103
Data Input e
A 4
105N
vy
3
Tf Control
S Unit
[
=
A

111 N

)) ~ 115
Post-Processing Unit

Figure 1

Patent Application Publication

2
OO\

Jan. 24,2019 Sheet 2 of 12

Vector Input

~ 203

221«
222
223 1
224 1
225 1

226
227

228 -1
229

207

US 2019/0026250 A1

A4

201"

Control
Unit

209

:213

A

I ATt E T IO I
211 < Vector Engme
BERERER

Post-Processing Unit

~ 215

Figure 2

Patent Application Publication

300
~

Jan. 24,2019 Sheet 3 of 12 US 2019/0026250 A1
~ 307
Memory l ; Cont_ro!
Unit
301N
A
L L TR PRI
311 - Vector Engine
YV V V V V VYV
~315

Post-Processing Unit

Figure 3

-
«
(=
' g]
e v 2inbi4
o
(=]
(=
X
S sng indinQ
i _~ LY
= i
"
-~ i
\m 1
S
: lagjng 1ndino
= 627 A
g
=
wn
(=)
S 21607 j0jU0D
(o] !
M, snv auibug 10100/
=
.m Jeyng induj sJo)sibey
m Gev Yl VA
= A _~ LO¥
=
R |
=]
= :
S sng indu| Ly
= A~
j=3
= 007
=
=
=
A

US 2019/0026250 A1

Jan. 24,2019 Sheet 5 of 12

Patent Application Publication

VA Y

~G/V

N ELY

—/9Y

—~GOY

89V

" /SY

GGY

%14

LGV

dv ainbi-
gead 6zad ocayd legd
vLmy Sy
Lay
vay gAY ggd L9
Zmy £MH
Lay
ogy ray zad £aY
oMY LMy
oay
0 @14g } 91ig Z 9¥ig ¢ aiig
0Gv °@lgeL

Patent Application Publication Jan. 24,2019 Sheet 6 of 12

501 "

Determine and
Assign Processing to
be Performed

'

503 N

Determine Matrix
Processor
Instruction(s)

'

505 N

Determine Vector
Engine Instruction(s)

'

507 N

Determine Post-
Processing
Instruction(s)

'

509 -

Schedule Instruction
Sequence

Figure 5

US 2019/0026250 A1

Patent Application Publication Jan. 24,2019 Sheet 7 of 12 US 2019/0026250 A1

601 Retrieve Pending
- Vector Engine

> Instruction

YES it 005
Additional 603 Decode Instruction
Instructions?
‘ 607
609~ Wait for Next Execute Instruction
Instruction

Clnstruction Complete>

Figure 6A

Patent Application Publication

Jan. 24,2019 Sheet 8 of 12

651~

Decode and Issue
Load Operation

'

653«

Receive Input Data

'

655 <

Load Vector Data
into Registers

657

'

Additional Data
Needed?

US 2019/0026250 A1

Load Additional Data

661 - Perform ALU
Operation
663« _
Write Result

Figure 6B

US 2019/0026250 A1

Jan. 24,2019 Sheet 9 of 12

Patent Application Publication

/ @inbi4
bay | epoodp aleIpawiw| m_u,ac%o sboy apoodQ | bay | apoadp
€9. L9/L JASYA GG/ €q. IG. E¥L 7
uonessdo uonesadp
21015 uonesadO onswyiy -
GL. EHL FLL

\~ ovL

/o_.h

Patent Application Publication

801~ Fetch Vector

Instruction

v

Decode
Instruction

v

Issue Instruction

821"

831+

Jan. 24, 2019 Sheet 10 of 12

US 2019/0026250 A1

No Op

~ 843

Load Op NO
841 Exists?
YES
8457 Execute Load Op
NO

ALU Op

851 Exists?

YES

855 Execute ALU Op

No Op

~ 853

861

865~

Execute Store Op

No Op

~" 863

k

(Instruction Complete)

Figure 8

US 2019/0026250 A1

Jan. 24, 2019 Sheet 11 of 12

Patent Application Publication

6 2inbi4

do si01s do nv do peoT m m
¢ uononasul | € uononiisul | € uonoNISU| mcw_wwmﬁc_ mwo_woo_wpwc_ mco_ﬁwohbmc_ : :

2Inoexg 21noexg 21NoeX] _ posed Uored _ : :
T L L T S A S L
m é86 : G/6 G96 : GS6 g6 gee ; :
W doasls | donmy | dopeol :
: 2 uononasuj | 2 uononaisul | g uononasyj Ncw%m:mbmc_ NMO_%VWHC_ N:owoMme :
; a1noaxg 81noax3 81noaxJ ! pooed Uored _ :
S R T T L T T S AL T S
; ; €6 . €96 €s6 . eve £e6 gc6 :
w : do al01g do nv do peoT
m : L uononasul | | uononasuyl | 1 uononisuyl F cw_w,owm:wc_ v Mo_wnw@wc_ g cowoM:mc_
; ; 81noaxg 8)noex 8)noex w Pooed Hored
196 1G6 L6 LE6 Lc6 L6

/orm

US 2019/0026250 A1

Jan. 24, 2019 Sheet 12 of 12

Patent Application Publication

0} aIinbi4

nolinsey

0G0}

LS

<07 18> DOVHIUS
: 9101

8EO} =~~~

ainjaensey

,, ,/SS

el \BIOBUZHNSOY
T 2101

e QG0 |
<0: L€> WNOoY 007}

ialvdizi g
800}~

US 2019/0026250 Al

VECTOR COMPUTATIONAL UNIT

CROSS REFERENCE TO OTHER
APPLICATIONS

[0001] This application claims priority to U.S. Provisional
Patent Application No. 62/625,251 entitled VECTOR COM-
PUTATIONAL UNIT filed Feb. 1, 2018, and claims priority
to U.S. Provisional Patent Application No. 62/536,399
entitted ACCELERATED MATHEMATICAL ENGINE
filed Jul. 24, 2017, and is a continuation-in-part of co-
pending U.S. patent application Ser. No. 15/710,433 entitled
ACCELERATED MATHEMATICAL ENGINE filed Sep.
20, 2017, which claims priority to U.S. Provisional Patent
Application No. 62/536,399 entitled ACCELERATED
MATHEMATICAL ENGINE filed Jul. 24, 2017, all of
which are incorporated herein by reference for all purposes.

BACKGROUND OF THE INVENTION

[0002] Processing for machine learning and artificial intel-
ligence typically requires performing mathematical opera-
tions on large sets of data and often involves solving
multiple convolution layers and pooling layers. Machine
learning and artificial intelligence techniques typically uti-
lize matrix operations and non-linear functions such as
activation functions. Applications of machine learning
include self-driving and driver-assisted automobiles. In
some scenarios, computer processors are utilized to perform
machine learning training and inference. Traditional com-
puter processors are able to perform a single mathematical
operation very quickly but typically can only operate on a
limited amount of data simultaneously. As an alternative,
graphical processing units (GPUs) may be utilized and are
capable of performing the same mathematical operations but
on a larger set of data in parallel. By utilizing multiple
processor cores, GPUs may perform multiple tasks in par-
allel and are typically capable of completing large graphics
processing tasks that utilized parallelism faster than a tra-
ditional computer processor. However, neither GPUs nor
traditional computer processors were originally designed for
machine learning or artificial intelligence operations.
Machine learning and artificial intelligence operations often
rely on the repeated application of a set of specific machine
learning processor operations over very large datasets.
Therefore, there exists a need for a microprocessor system
that supports performing machine learning and artificial
intelligence specific processing operations on large datasets
in parallel without the overhead of multiple processing cores
for each parallel operation.

BRIEF DESCRIPTION OF THE DRAWINGS

[0003] Various embodiments of the invention are dis-
closed in the following detailed description and the accom-
panying drawings.

[0004] FIG. 1 is a block diagram illustrating an embodi-
ment of a microprocessor system for performing machine
learning processing.

[0005] FIG. 2 is a block diagram illustrating an embodi-
ment of a microprocessor system for performing machine
learning processing.

[0006] FIG. 3 is a block diagram illustrating an embodi-
ment of a microprocessor system for performing machine
learning processing.

Jan. 24, 2019

[0007] FIG. 4A is a block diagram illustrating an embodi-
ment of a vector computational unit for performing machine
learning processing.

[0008] FIG. 4B is a table illustrating an exemplary aliasing
of vector registers.

[0009] FIG. 5 is a flow diagram illustrating an embodi-
ment of a process for determining processor instructions for
a microprocessor system.

[0010] FIG. 6A is a flow diagram illustrating an embodi-
ment of a process for the running execution of a vector
computational unit.

[0011] FIG. 6B is a flow diagram illustrating an embodi-
ment of a process for processing vector data by a vector
computational unit.

[0012] FIG. 7 is a block diagram illustrating an embodi-
ment of an encoding format for a vector computational unit
instruction.

[0013] FIG. 8 is a flow diagram illustrating an embodi-
ment of a process for performing a single vector computa-
tional unit instruction by a vector computational unit.
[0014] FIG. 9 is a diagram illustrating an exemplary
instruction cycle of a vector computational unit.

[0015] FIG. 10 is a block diagram illustrating an embodi-
ment of a computation unit of a computational array.

DETAILED DESCRIPTION

[0016] The invention can be implemented in numerous
ways, including as a process; an apparatus; a system; a
composition of matter; a computer program product embod-
ied on a computer readable storage medium; and/or a
processor, such as a processor configured to execute instruc-
tions stored on and/or provided by a memory coupled to the
processor. In this specification, these implementations, or
any other form that the invention may take, may be referred
to as techniques. In general, the order of the steps of
disclosed processes may be altered within the scope of the
invention. Unless stated otherwise, a component such as a
processor or a memory described as being configured to
perform a task may be implemented as a general component
that is temporarily configured to perform the task at a given
time or a specific component that is manufactured to per-
form the task. As used herein, the term ‘processor’ refers to
one or more devices, circuits, and/or processing cores con-
figured to process data, such as computer program instruc-
tions.

[0017] A detailed description of one or more embodiments
of'the invention is provided below along with accompanying
figures that illustrate the principles of the invention. The
invention is described in connection with such embodi-
ments, but the invention is not limited to any embodiment.
The scope of the invention is limited only by the claims and
the invention encompasses numerous alternatives, modifi-
cations and equivalents. Numerous specific details are set
forth in the following description in order to provide a
thorough understanding of the invention. These details are
provided for the purpose of example and the invention may
be practiced according to the claims without some or all of
these specific details. For the purpose of clarity, technical
material that is known in the technical fields related to the
invention has not been described in detail so that the
invention is not unnecessarily obscured.

[0018] A microprocessor system utilizing a vector com-
putational unit and a vector computational unit instruction
set architecture is disclosed. For example, a microprocessor

US 2019/0026250 Al

system includes a computational array in communication
with a vector computational unit. In various embodiments, a
computational array is a matrix processor capable of per-
forming arithmetic operations on two input vectors and
includes a plurality of computation units to receive the M
operands and N operands from the input vectors. In some
embodiments, the computation units are sub-circuits that
include an arithmetic logic unit, an accumulator, and a
shadow register for performing operations such as generat-
ing dot-products and performing various processing for
convolution. Unlike conventional graphical processing unit
(GPU) or central processing unit (CPU) processing cores,
where each core is configured to receive its own unique
processing instruction, the computation units of the compu-
tational array each perform the same computation in parallel
in response to an individual instruction received by the
computational array. In various embodiments, the vector
computational unit includes a plurality of processing ele-
ments for performing load, arithmetic, and store operations
on a vector of input data in parallel. The processing elements
of the vector computational unit are configured to receive an
output from the computational array. In various embodi-
ments, the output of the computational array and the input
into the vector computational unit is an array of data. The
received input to the vector computational unit is processed
in parallel in response to a single processor instruction.
Similar to the computational array, the processing elements
of the vector computational unit each perform the same
computation in parallel in response to an individual instruc-
tion received by the vector computational unit. In some
embodiments, the microprocessor system further includes a
control unit configured to provide instructions to the vector
computational unit. Each single processor instruction may
specify a plurality of component instructions to be executed
by the vector computational unit. In response to a single
instruction, each of the plurality of processing elements of
the vector computational unit processes different data ele-
ments of the vector input in parallel with the other process-
ing elements. In some embodiments, the output of the vector
computational unit is fed into a post-processing unit for
performing post-processing such as pooling operations.

[0019] In some embodiments, a microprocessor system
comprises at least a computational array and a vector
computational unit. For example, a computational array is
communicatively connected to a vector computational unit
such that the output of the computational array is fed as input
to the vector computational unit. In various embodiments,
the computational array includes a plurality of computation
units. For example, the computation units may be sub-
circuits of a matrix processor that include the functionality
for performing one or more multiply, add, and shift opera-
tions. As another example, computation units may be sub-
circuits that include the functionality for performing a
dot-product operation. In various embodiments, the compu-
tational array includes a sufficient number of computation
units for performing multiple operations on the data inputs
in parallel. For example, a computational array configured to
receive M operands and N operands may include at least
MxN computation units. In various embodiments, the
microprocessor system further comprises a control unit for
coordinating processing between the computational array
and a vector computational unit. For example, the control
unit may coordinate data from memory to be fed into the
computational array, data from the computational array to be

Jan. 24, 2019

fed into the vector computational unit, and/or data from the
vector computational unit to be stored in memory or fed into
a post-processing unit. In some embodiments, the control
unit is configured to provide computational array instruc-
tions to the computational array, vector computational unit
instructions to the vector computational unit, and/or post-
processing instructions to a post-processing unit.

[0020] In some embodiments, the vector computational
unit in communication with the computational array
includes a plurality of processing elements configured to
receive as input the output data elements from the compu-
tational array. For example, a vector computational unit,
such as a vector engine, receives as input a vector for
processing. The vector computational unit may include a
processing element for each element of the input vector. An
example vector computational unit configured to receive a
vector of N elements (or operands) may include N process-
ing elements for processing the N elements in parallel. In
various embodiments, the processing elements are config-
ured to receive output data elements from the computational
array. For example, the output from the computational array
may be a vector of data elements that are fed to be received
by the processing elements of the vector computational unit.
In various embodiments, each vector computational unit
processes in parallel the received output data elements from
the computational array in response to a single processor
instruction. For example, a single processor instruction is
applied to each of the processing elements of the vector
computational unit to be performed on the corresponding
data element.

[0021] In some embodiments, a control unit is configured
to provide at least a single processor instruction to the vector
computational unit. The single processor instruction speci-
fies a plurality of component instructions to be executed by
the vector computational unit (e.g., in response to the single
processor instruction). For example, a control unit provides
to the vector computational unit a single vector instruction,
such as an instruction triad, that includes multiple compo-
nent instructions. In some embodiments, an instruction triad
is a simple processor instruction that includes up to three
component instructions, such as a separate load instruction,
arithmetic logic unit (ALU) instruction, and store instruc-
tion. The three component instructions are received and
executed by the vector computational unit (e.g., in response
to the instruction triad). For example, a vector computational
unit receiving an instruction triad that bundles a load instruc-
tion, an ALU instruction, and a store instruction executes the
load instruction, the arithmetic instruction, and the store
instruction. In various embodiments, in response to the
single processor instruction, the plurality of processing
elements of the vector computational unit are configured to
process different data elements in parallel with other pro-
cessing elements. For example, each processing element is
capable of processing in parallel a different data element
from the input vector to the vector computational unit. As
another example, each of the component instructions of a
single vector processor instruction triad may be applied to
each of the elements of a vector input to complete the
processing of an entire input vector of N elements in parallel
using the vector computational unit.

[0022] FIG. 1 is a block diagram illustrating an embodi-
ment of a microprocessor system for performing machine
learning processing. In the example shown, microprocessor
system 100 includes control unit 101, data input 103, weight

US 2019/0026250 Al

input 105, matrix processor 107, vector engine 111, and
post-processing unit 115. Data input 103 and weight input
105 are input modules for preparing data for matrix proces-
sor 107. In some embodiments, data input 103 and weight
input 105 each include an input data formatter, a cache or
buffer, and/or a logic circuit for preparing data for matrix
processor 107. For example, data input 103 may prepare N
operands from a two-dimensional array corresponding to
image data and weight input 105 may prepare M operands
corresponding to a vector of weight values to be processed
by matrix processor 107. In some embodiments, the process
of FIG. 5 is performed to prepare instructions for operating
on microprocessor system 100, including matrix processor
instructions for matrix processor 107 and vector engine
instructions for vector engine 111. In some embodiments,
microprocessor system 100, including vector engine 111,
performs the processes described below with respect to
FIGS. 6A, 6B, and 8.

[0023] In some embodiments, matrix processor 107 is a
computational array that includes a plurality of computation
units. For example, a matrix processor receiving M operands
and N operands from weight input 105 and data input 103,
respectively, includes MxN computation units. In the figure
shown, the small squares inside matrix processor 107 depict
that matrix processor 107 includes a logical two-dimen-
sional array of computation units. Computation unit 109 is
one of a plurality of computation units of matrix processor
107. In some embodiments, each computation unit is con-
figured to receive one operand from data input 103 and one
operand from weight input 105. In some embodiments, the
computation units are configured according to a logical
two-dimensional array but the matrix processor is not nec-
essarily fabricated with computation units laid out as a
physical two-dimensional array. For example, the i-th oper-
and of data input 103 and the j-th operand of weight input
105 are configured to be processed by the i-thxj-th compu-
tation unit of matrix processor 107.

[0024] In various embodiments, the data width of compo-
nents data input 103, weight input 105, matrix processor
107, vector engine 111, and post-processing unit 115 are
wide data widths and include the ability to transfer more
than one operand in parallel. In some embodiments, data
input 103 and weight input 105 are each 96-bytes wide. In
some embodiments, data input 103 is 192-bytes wide and
weight input 105 is 96-bytes wide. In various embodiments,
the width of data input 103 and weight input 105 is dynami-
cally configurable. For example, data input 103 may be
dynamically configured to 96 or 192 bytes and weight input
105 may be dynamically configured to 96 or 48 bytes. In
some embodiments, the dynamic configuration is controlled
by control unit 101. In various embodiments, a data width of
96 bytes allows 96 operands to be processed in parallel. For
example, in an embodiment with data input 103 configured
to be 96-bytes wide, data input 103 can transfer 96 operands
to matrix processor 107 in parallel.

[0025] In various embodiments, matrix processor 107 is
configured to receive N bytes from data input 103 and M
bytes from weight input 105 and includes at least MxN
computation units. For example, matrix processor 107 may
be configured to receive 96 bytes from data input 103 and 96
bytes from weight input 105 and includes at least 96x96
computation units. As another example, matrix processor
107 may be configured to receive 192 bytes from data input
103 and 48 bytes from weight input 105 and includes at least

Jan. 24, 2019

192x48 computation units. In various embodiments, the
dimensions of matrix processor 107 may be dynamically
configured. For example, the default dimensions of matrix
processor 107 may be configured to receive 96 bytes from
data input 103 and 96 bytes from weight input 105 but the
input dimensions may be dynamically configured to 192
bytes and 48 bytes, respectively. In various embodiments,
the output size of each computation unit is equal to or larger
than the input size. For example, in some embodiments, the
input to each computation unit is two 1-byte operands, one
corresponding to an operand from data input 103 and one
from weight input 105, and the output of processing the two
operands is a 4-byte result. As another example, matrix
processor 107 may be configured to receive 96 bytes from
data input 103 and 96 bytes from weight input 105 and
output 96 4-byte results. In some embodiments, the output of
matrix processor 107 is a vector. For example, a matrix
processor configured to receive two 96-wide input vectors,
where each element (or operand) of the input vector is one
byte in size, can output a 96-wide vector result where each
element of the vector result is 4-bytes in size.

[0026] In various embodiments, each computation unit of
matrix processor 107 is a sub-circuit that includes an arith-
metic logic unit, an accumulator, and a shadow register. In
the example shown, the computation units of matrix pro-
cessor 107 can perform an arithmetic operation on the M
operands and N operands from weight input 105 and data
input 103, respectively. In various embodiments, each com-
putation unit is configured to perform one or more multiply,
add, accumulate, and/or shift operations. In some embodi-
ments, each computation unit is configured to perform a
dot-product operation. For example, in some embodiments,
a computation unit may perform multiple dot-product com-
ponent operations to calculate a dot-product result. For
example, the array of computation units of matrix processor
107 may be utilized to perform convolution steps required
for performing inference using a machine learning model. A
two-dimensional data set, such as an image, may be format-
ted and fed into matrix processor 107 using data input 103,
one vector at a time. In parallel, a vector of weights may be
applied to the two-dimensional data set by formatting the
weights and feeding them as a vector into matrix processor
107 using weight input 105. Corresponding computation
units of matrix processor 107 perform a matrix processor
instruction on the corresponding operands of the weight and
data inputs in parallel.

[0027] In some embodiments, vector engine 111 is a
vector computational unit that is communicatively coupled
to matrix processor 107. Vector engine 111 includes a
plurality of processing elements including processing ele-
ment 113. In the figure shown, the small squares inside
vector engine 111 depict that vector engine 111 includes a
plurality of processing elements arranged as a vector. In
some embodiments, the processing elements are arranged in
a vector in the same direction as data input 103. In some
embodiments, the processing elements are arranged in a
vector in the same direction as weight input 105. In various
embodiments, the data size of the processing elements of
vector engine 111 is the same size or larger than the data size
of the computation units of matrix processor 107. For
example, in some embodiments, computation unit 109
receives two operands each 1 byte in size and outputs a
result 4 bytes in size. Processing element 113 receives the
4-byte result from computation unit 109 as an input 4 bytes

US 2019/0026250 Al

in size. In various embodiments, the output of vector engine
111 is the same size as the input to vector engine 111. In
some embodiments, the output of vector engine 111 is
smaller in size compared to the input to vector engine 111.
For example, vector engine 111 may receive up to 96
elements each 4 bytes in size and output 96 elements each
1 byte in size. In various embodiments, vector engine 111
performs quantization on the output result resulting in the
output of vector engine 111 being smaller in size compared
to the input to vector engine 111. In various embodiments,
the quantization is performed as part of a single instruction.
For example, a quantization and a non-linear function are
performed as a single processor instruction. As described
above, in some embodiments, the communication channel
from data input 103 and weight input 105 to matrix proces-
sor 107 is 96-elements wide with each element 1 byte in size
and matches the output size of vector engine 111 (96-
elements wide with each element 1 byte in size).

[0028] In some embodiments, the processing elements of
vector engine 111, including processing element 113, each
include an arithmetic logic unit (ALU) (not shown). For
example, in some embodiments, the ALU of each processing
element is capable of performing arithmetic operations. In
some embodiments, each AL U of the processing elements is
capable of performing in parallel a rectified linear unit
(ReLU) function and/or scaling functions. In some embodi-
ments, each ALU is capable of performing a non-linear
function including non-linear activation functions. In vari-
ous embodiments, each processing element of vector engine
111 includes one or more flip-flops for receiving input
operands. In some embodiments, each processing element
has access to a slice of a vector engine accumulator and/or
vector registers of vector engine 111. For example, a vector
engine capable of receiving 96-elements includes a 96-cle-
ment wide accumulator and one or more 96-element vector
registers. Hach processing element has access to a one-
element slice of the accumulator and/or vector registers. In
some embodiments, each element is 4-bytes in size. In
various embodiments, the accumulator and/or vector regis-
ters are sized to fit at least the size of an input data vector.
In some embodiments, vector engine 111 includes additional
vector registers sized to fit the output of vector engine 111.

[0029] In some embodiments, the processing elements of
vector engine 111 are configured to receive data from matrix
processor 107 and each of the processing elements can
process the received portion of data in parallel. As one
example of a processing element, processing element 113 of
vector engine 111 receives data from computation unit 109
of matrix processor 107. In various embodiments, vector
engine 111 receives a single vector processor instruction and
in turn each of the processing elements performs the pro-
cessor instruction in parallel with the other processing
elements. In some embodiments, the processor instruction
includes one or more component instructions, such as a load,
a store, and/or an arithmetic logic unit operation. In various
embodiments, a no-op operation may be used to replace a
component instruction.

[0030] In the example shown, the dotted arrows between
data input 103 and matrix processor 107, weight input 105
and matrix processor 107, matrix processor 107 and vector
engine 111, and vector engine 111 and post-processing unit
115 depict a coupling between the respective pair of com-
ponents that is capable of sending multiple data elements
such as a vector of data elements. As an example, the

Jan. 24, 2019

communication channel between matrix processor 107 and
vector engine 111 may be 96x32 bits wide and support
transferring 96 elements in parallel where each element is 32
bits in size. As another example, the communication channel
between vector engine 111 and post-processing unit 115 may
be 96x1 byte wide and support transferring 96 elements in
parallel where each element is 1 byte in size. In various
embodiments, data input 103 and weight input 105 are
coupled to a memory module (not shown in FIG. 1) and may
each receive input data from the memory module. In some
embodiments, vector engine 111 is additionally coupled to a
memory module (not shown in FIG. 1) and may receive
input data from the memory module in addition or alterna-
tively to input from matrix processor 107. In the various
embodiments, a memory module is typically a static random
access memory (SRAM).

[0031] In some embodiments, one or more computation
units of matrix processor 107 may be grouped together into
a lane such that matrix processor 107 has multiple lanes. In
various embodiments, the lanes of matrix processor 107 may
be aligned with either data input 103 or weight input 105.
For example, a lane aligned with weight input 105 includes
a set of computation units that are configured to receive as
input every operand of weight input 105. Similarly, a lane
aligned with data input 103 includes a set of computation
units that are configured to receive as input every operand of
data input 103. In the example shown in FIG. 1, the lanes are
aligned along weight input 105 in a vertical column and each
lane feeds to a corresponding lane of vector engine 111. In
some embodiments, each lane is a vertical column of sub-
circuits that include multiply, add and/or accumulate, and
shift functionality. In some embodiments, matrix processor
107 includes a matrix of tiles and each tile is a matrix of
computation units. For example, a 96x96 matrix processor
may include a matrix of 6x6 tiles, where each tile includes
16x16 computation units. In some embodiments, a vertical
lane is a single column of tiles. In some embodiments, a
horizontal lane is a single row of tiles. In various embodi-
ments, the dimensions of the lane may be configured
dynamically and may be utilized for performing alignment
operations on the input to matrix processor 107, vector
engine 111, and/or post-processing unit 115. In some
embodiments, the dynamic configuration is performed by or
using control unit 101 and/or with using processor instruc-
tions controlled by control unit 101.

[0032] In some embodiments, control unit 101 synchro-
nizes the processing performed by matrix processor 107,
vector engine 111, and post-processing unit 115. For
example, control unit 101 may send processor specific
instructions to each of matrix processor 107, vector engine
111, and post-processing unit 115. Control unit 101 may
send matrix processor instructions to matrix processor 107.
A matrix processor instruction may be a computational array
instruction that instructs a computational array to perform an
arithmetic operation, such as a dot-product or dot-product
component, using specified operands from data input 103
and/or weight input 105. Control unit 101 may send vector
processor instructions to vector engine 111. For example, a
vector processor instruction may include a single processor
instruction with a plurality of component instructions to be
executed together by the vector computational unit. Control
unit 101 may send post-processing instructions to post-
processing unit 115. In various embodiments, control unit
101 synchronizes data that is fed to matrix processor 107

US 2019/0026250 Al

from data input 103 and weight input 105, to vector engine
111 from matrix processor 107, and to post-processing unit
115 from vector engine 111. In some embodiments, control
unit 101 synchronizes the data between different compo-
nents of microprocessor system 100 including between data
input 103, weight input 105, matrix processor 107, vector
engine 111, and/or post-processing unit 115 by utilizing
processor specific memory, queue, and/or dequeue opera-
tions. In some embodiments, data and instruction synchro-
nization is performed by control unit 101. In some embodi-
ments, data and instruction synchronization is performed by
control unit 101 that includes one or more sequencers to
synchronize processing between matrix processor 107, vec-
tor engine 111, and/or post-processing unit 115.

[0033] In some embodiments, matrix processor 107 and
vector engine 111 are utilized for processing convolution
layers. In some embodiments, vector engine 111 is utilized
for performing non-linear functions such as an activation
function on the output of matrix processor 107. For example,
matrix processor 107 may be used to calculate a dot-product
and vector engine 111 may be used to perform an activation
function such as a rectified linear unit (RelLU) or sigmoid
function. In some embodiments, post-processing unit 115 is
utilized for performing pooling operations. In some embodi-
ments, post-processing unit 115 is utilized for formatting
and storing the processed data to memory and may be
utilized for synchronizing memory writing latency.

[0034] FIG. 2 is a block diagram illustrating an embodi-
ment of a microprocessor system for performing machine
learning processing. In the example shown, microprocessor
system 200 includes control unit 201, vector input 203,
vector engine input queue 207, vector engine 211, and
post-processing unit 215. Vector engine input queue 207
includes a plurality of computation units including compu-
tation units 209 and 221-229 and vector engine 211 includes
a plurality of processing elements including processing
elements 213 and 231. Vector input 203 is an input module
for feeding data into vector engine input queue 207. In some
embodiments, vector input 203 includes an input data for-
matter, a cache or buffer, and/or a logic circuit for preparing
data for vector engine input queue 207. For example, vector
input 203 may prepare N operands from a two-dimensional
array to be processed by vector engine 211 utilizing vector
engine input queue 207 as a first-in-first-out (FIFO) input
queue. In some embodiments, vector input 203 is coupled to
memory (not shown in FIG. 2), such as static random access
memory (SRAM) for retrieving data.

[0035] In various embodiments, control unit 201, vector
input 203, vector engine input queue 207, vector engine 211,
and post-processing unit 215 are, respectively, control unit
101, data input 103, matrix processor 107, vector engine
111, and post-processing unit 115 of FIG. 1. For example,
matrix processor 107 of FIG. 1 may be used to implement
an input queue such as vector engine input queue 207 by
receiving data from data input 103 of FIG. 1 and repeatedly
shifting each vector of input towards vector engine 111 of
FIG. 1.

[0036] In some embodiments, vector engine input queue
207 is a computational array unit and includes a matrix of
computation units whose columns are first-in-first-out
(FIFO) queues. In the example shown, vector engine input
queue 207 is an input queue for vector input 203 and
functions as a wide first-in-first-out (FIFO) queue to feed
multiple data elements from vector input 203 to vector

Jan. 24, 2019

engine 211. For example, computation units 221-229 make
up a vertical column of computation units that work together
as a single FIFO queue. In various embodiments, vector
engine input queue 207 includes multiple FIFO queues made
up of vertical columns of computation units similar to
computation units 221-229. For example, in an embodiment
where vector engine input queue 207 is 96 computation units
wide, vector engine input queue 207 has 96 vertical columns
of computation units that correspond to 96 FIFO queues. As
a further example, in an embodiment where vector engine
input queue 207 is 96 computation units long, vector engine
input queue 207 has FIFO queues that are 96 stages long.

[0037] In various embodiments, each first-in-first-out
(FIFO) queue works in parallel and shifts input received
from the vector input 203 along the FIFO queue to vector
engine 211. The first row of computation units of vector
engine input queue 207, which includes computation unit
221, is connected to the vector input 203. The first row of
computation units is configured to receive an entire row of
data from vector input 203 in parallel. The last row of
computation units of vector engine input queue 207 is
connected to the row of processing elements of vector
engine 211. For example, the last row of computation units
of'vector engine input queue 207 includes computation units
229 and 209. Computation unit 209 is connected to process-
ing element 213 and computation unit 229 is connected to
processing element 231. Processing elements 213 and 231
are configured to receive the data output elements of com-
putation units 209 and 229, respectively. The processing
elements of vector engine 211 receive an entire row of data
from the last row of computation units of vector engine input
queue 207 in parallel. In various embodiments, when the last
row of computation units of vector engine input queue 207
has data available to dequeue, a dequeue ready signal is
received by vector engine 211 to indicate the vector engine
input queue 207 is ready to receive a queue operation.

[0038] In the example described, the data from the first
row of computation units is shifted down the column to the
next row of computation units in the logical direction
towards vector engine 211. For example, an input corre-
sponding to a data element of vector input 203 is received as
an operand at computation unit 221 and shifted from com-
putation unit 221 to computation unit 222, from computation
unit 222 to computation unit 223, from computation unit 223
to computation unit 224, and so forth, until an operand
received at computation unit 221 is incrementally shifted
from computation unit 221 to computation unit 229 via the
intermediate computation units 222-228. In various embodi-
ments, a data element pushed into the FIFO takes as many
shifts as the FIFO is deep in computation units. For example,
a FIFO queue with 96 computation units and 96 stages long
requires 96 shifts to dequeue an inserted element. In various
embodiments, each stage of the FIFO can shift an operand
in parallel with the other stages. For example, while each
intermediate computation unit in the FIFO queue shifts its
operand to the next computation unit, the first computation
unit can retrieve the next data element from vector input 203
and the last computation unit can dequeue its data element
to be received by the corresponding processing element of
vector engine 211. In the example described, each compu-
tation unit along each row of computation units works in
parallel to shift its corresponding data element originally
received from vector input 203 to vector engine 211.

US 2019/0026250 Al

[0039] In some embodiments, vector engine input queue
207 is coupled to vector input 203 and one dimension of the
matrix of computation units matches the dimension of vector
input 203. For example, in an embodiment with vector input
203 having a width of 96 bytes, vector engine input queue
207 has a matrix of computation units with a width of at least
96 bytes. In some embodiments, the width of vector input
203 and the corresponding width of the inputs to vector
engine input queue 207 are dynamically configurable. For
example, vector input 203 can be dynamically configured to
96 bytes or 96x2 bytes and the corresponding width of
inputs to vector engine input queue 207 are configurable to
96 bytes or 96x2 bytes, respectively. In some embodiments,
the configuration is performed using control unit 201 and/or
processor instructions to vector engine input queue 207.

[0040] In some embodiments, vector engine 211 is a
vector computational unit that is communicatively coupled
to vector engine input queue 207. Vector engine 211 includes
a plurality of processing elements including processing
elements 213 and 231. In the figure shown, the small squares
inside vector engine 211 depict that vector engine 211
includes a plurality of processing elements arranged as a
vector. In some embodiments, the processing elements are
arranged in a vector in the same direction as vector input
203. In various embodiments, the data size of the processing
elements of vector engine 211 is the same size or larger than
the data size of the computation units of vector engine input
queue 207. For example, in some embodiments, computa-
tion unit 209 receives an operand 1 byte in size and dequeues
an output to processing element 213 also having a size of 1
byte. Processing element 213 receives the 1 byte output from
computation cell 209 as an input 1 byte in size. In various
embodiments, the output of vector engine 211 is the same
size as the input to vector engine 211. In various embodi-
ments, the output of vector engine 211 is smaller in size as
compared to the input to vector engine 211. For example,
vector engine 211 may receive up to 96 elements each 4
bytes in size and output 96 elements each 1 byte in size. In
some embodiments, the communication channel from vector
input 203 to vector engine input queue 207 is 96 elements
wide with each element 1 byte in size and matches the output
size of vector engine 211 (96 elements wide with each
element 1 byte in size).

[0041] In some embodiments, the processing elements of
vector engine 211, including processing elements 213 and
231, each include an arithmetic logic unit (not shown) and
are described in further detail with respect to vector engine
111 of FIG. 1. In some embodiments, the processing ele-
ments of vector engine 211 are configured to receive data
from vector engine input queue 207 and each of the pro-
cessing elements can process the received portion of data in
parallel. As one example of a processing element, processing
elements 213 and 231 of vector engine 211 receive data from
computation units 209 and 229, respectively, of vector
engine input queue 207. In various embodiments, vector
engine 211 receives a single vector processor instruction and
in turn each of the processing elements performs the pro-
cessor instruction in parallel with the other processing
elements. In some embodiments, the processor instruction
includes one or more component instructions, such as a load,
a store, and/or an arithmetic logic unit operation. In various
embodiments, a no-op operation may be used to replace a
component instruction.

Jan. 24, 2019

[0042] In the example shown, the dotted arrows between
vector input 203 and vector engine input queue 207, vector
engine input queue 207 and vector engine 211, and vector
engine 211 and post-processing unit 215 depict a coupling
between the respective pair of components that is capable of
sending multiple data elements. As an example, the com-
munication channel between vector engine input queue 207
and vector engine 211 may be 96x32 bits wide and support
transferring 96 elements in parallel where each element is 32
bits in size. As another example, the communication channel
between vector engine 211 and post-processing unit 215
may be 96x1 byte wide and support transferring 96 elements
in parallel where each element is 1 byte in size. In various
embodiments, vector input 203 is coupled to a memory
module (not shown in FIG. 2) and may receive input data
from the memory module. In some embodiments, vector
engine 211 is additionally coupled to a memory module (not
shown in FIG. 1) and may receive input data from the
memory module in addition or alternatively to input from
vector engine input queue 207. In the various embodiments,
a memory module is typically a static random access
memory (SRAM).

[0043] In some embodiments, one or more computation
units of vector engine input queue 207 may be grouped
together into a vertical column such that vector engine input
queue 207 has multiple vertical column lanes. In the
example shown in FIG. 2, the lanes are aligned along the
same vertical columns as the first-in-first-out (FIFO) queues
described above and each lane feeds to a corresponding lane
of vector engine 211. In some embodiments, each lane is a
vertical column of sub-circuits that include multiply, add
and/or accumulate, and shift functionality. In some embodi-
ments, a vertical lane is a single column of computation
units. In some embodiments, a vertical lane is a group of
multiple columns of adjacent computation units. In various
embodiments, the dimensions of the lane may be configured
dynamically and may be utilized for performing alignment
operations on the input to vector engine input queue 207,
vector engine 211, and/or post-processing unit 215. In some
embodiments, the dynamic configuration is performed by or
using control unit 201 and/or with using processor instruc-
tions controlled by control unit 201.

[0044] In some embodiments, control unit 201 synchro-
nizes the processing performed by vector engine input queue
207, vector engine 211, and/or post-processing unit 215. For
example, control unit 201 may send processor specific
instructions to each of vector engine input queue 207, vector
engine 211, and post-processing unit 215. Control unit 201
may send vector engine input queue instructions to vector
engine input queue 207. In some embodiments, vector
engine input queue instructions are a subset of the matrix
processor instructions that matrix processor 107 of FIG. 1 is
capable of responding to and is described further with
respect to FIG. 1. A vector engine input queue instruction
may be a computational array instruction that instructs a
computational array to perform a load operation, a shift
operation, or other appropriate instruction for interfacing
with an input queue. Control unit 201 may send vector
processor instructions to vector engine 211. For example, a
vector processor instruction may include a single processor
instruction with a plurality of component instructions to be
executed together by the vector computational unit. Control
unit 201 may send post-processing instructions to post-
processing unit 215. In various embodiments, control unit

US 2019/0026250 Al

201 synchronizes data that is fed to vector engine input
queue 207 from vector input 203, to vector engine 211 from
vector engine input queue 207, and to post-processing unit
215 from vector engine 211. In some embodiments, control
unit 201 synchronizes the data between different compo-
nents vector input 203, vector engine input queue 207,
vector engine 211, and/or post-processing unit 215 by uti-
lizing processor specific memory, queue, and/or dequeue
operations. The functionality of control unit 201 is described
in further detail with respect to control unit 101 of FIG. 1.
[0045] In some embodiments, control unit 201 is utilized
to configure the size and number of data elements to be
received by vector engine input queue 207, vector engine
211, and/or post-processing unit 215. For example, in some
embodiments, control unit 201 may be utilized to configure
the input to vector engine input queue 207 as 96 elements
each of'size 1 byte or other appropriate variations such as 48
elements each of size 2 bytes, 96 elements each of size 2
bytes, 192 elements each of size 4 bits, etc. In some
embodiments, vector engine input queue 207 is able to
output a data element with a size larger than it can receive
by performing a sequence of load and logical shift opera-
tions. For example, a 4-byte input data element is loaded into
vector engine input queue 207 by reading four sequential
1-byte portions of the 4-byte input data element and logi-
cally shifting each byte to the appropriate bit fields. As
another example, in some embodiments, control unit 201
may be utilized to configure the input to vector engine 211
as 96 elements each of size 4 bytes, or other appropriate
variations such as 96 elements each of size 1 byte, 48
elements each of size 2 bytes, etc.

[0046] In various embodiments, post-processing unit 215
is utilized to perform post-processing of output from vector
engine 211. The post-processing functionality of post-pro-
cessing unit 215 is described in further detail with respect to
post-processing unit 115 of FIG. 1.

[0047] FIG. 3 is a block diagram illustrating an embodi-
ment of a microprocessor system for performing machine
learning processing. In the example shown, microprocessor
system 300 includes control unit 301, memory 307, vector
engine 311, and post-processing unit 315. In various
embodiments, memory 307 is typically a static random
access memory (SRAM). In various embodiments, post-
processing unit 315 received input data from vector engine
311 and is utilized to perform post-processing of output from
vector engine 311. The post-processing functionality of
post-processing unit 315 is described in further detail with
respect to post-processing unit 115 of FIG. 1.

[0048] The block diagram of FIG. 3 depicts a system
architecture embodiment where vector engine 311 is coupled
to memory 307 and may retrieve data directly from memory
307. In various embodiments, the size of the communication
channel between memory 307 and vector engine 311 may be
configured to transfer multiple data elements in parallel from
memory 307 to vector engine 311. For example, in an
embodiment where vector engine 311 is capable of receiving
96 elements each of 32 bits in size in parallel, the size of the
communication channel between memory 307 and vector
engine 311 is configured to transfer 96 elements each of 32
bits in size from memory 307 to vector engine 311 in
parallel. In some embodiments, memory 307 includes a data
formatter (not shown) which may include a data cache or
buffer and/or a logic circuit for formatting data from
memory prior to transfer to vector engine 311. For example,

Jan. 24, 2019

data elements of size 1 byte may be stored on word bound-
aries in memory 307 and the data formatter is utilized to
format and/or mask the data to byte boundaries. In various
embodiments, control unit 301, vector engine 311, and
post-processing unit 315 are, respectively, control unit 101,
vector engine 111, and post-processing unit 115 of FIG. 1. In
various embodiments, vector engine 311 may be further
coupled to a matrix processor (not shown) as described with
respect to matrix processor 107 of FIG. 1.

[0049] In some embodiments, vector engine 311 is a
vector computational unit that is communicatively coupled
to memory 307. Vector engine 311 includes a plurality of
processing elements including processing element 313. In
the figure shown, the small squares inside vector engine 311
depict that vector engine 311 includes a plurality of pro-
cessing elements arranged as a vector. In some embodi-
ments, the processing elements of vector engine 311, includ-
ing processing element 313, each include an arithmetic logic
unit (not shown). The processing elements of vector engine
311 are configured to receive data from memory 307 and
each of the processing elements can process the received
portion of data in parallel. In various embodiments, vector
engine 311 receives a single vector processor instruction and
in turn each of the processing elements performs the pro-
cessor instruction in parallel with the other processing
elements. In some embodiments, the processor instruction
includes one or more component instructions, such as a load,
a store, and/or an arithmetic logic unit operation. The
functionality of vector engine 311 is described in further
detail with respect to vector engine 111 and 211 of FIGS. 1
and 2, respectively.

[0050] In some embodiments, control unit 301 synchro-
nizes the processing performed by vector engine 311 and
post-processing unit 315, and access to memory 307. For
example, control unit 301 may send processor specific
instructions to each of vector engine 311 and post-process-
ing unit 315. In some embodiments, control unit 301 may
send vector processor instructions to vector engine 311. For
example, a vector processor instruction may include a single
processor instruction with a plurality of component instruc-
tions to be executed together by the vector computational
unit. In some embodiments, control unit 301 may send
post-processing instructions to post-processing unit 315. In
various embodiments, control unit 301 synchronizes data
that is received by vector engine 311 from memory 307 and
received by post-processing unit 315 from vector engine
311. In some embodiments, control unit 301 synchronizes
the data between different components vector engine 311
and/or post-processing unit 315 by utilizing vector engine
and/or post-processing unit processor specific operations.
The functionality of control unit 301 is described in further
detail with respect to control unit 101 of FIG. 1.

[0051] In some embodiments, control unit 301 is utilized
to configure the size and number of data elements to be
received by vector engine 311 and/or post-processing unit
315. For example, in some embodiments, control unit 301
may be utilized to configure vector engine 311 to receive 96
data elements each of size 4 bytes, or other appropriate
variations such as 96 elements each of size 1 byte, 48
elements each of size 2 bytes, etc. As described further with
respect to FIGS. 1 and 2, the dotted arrows between vector
engine 311 and post-processing unit 315 depict a coupling
between the respective pair of components that is capable of
sending multiple data elements. As an example, the com-

US 2019/0026250 Al

munication channel between vector engine 311 and post-
processing unit 315 may be 96x1 byte wide and support
transferring 96 elements in parallel where each element is 1
byte in size.

[0052] FIG. 4A is a block diagram illustrating an embodi-
ment of a vector computational unit for performing machine
learning processing. In the example shown, microprocessor
system 400 includes vector computational unit 401, input
bus 411, and output bus 431. Input to vector computational
unit 401 arrives from input bus 411. Output from vector
computational unit 401 is written to output bus 431. In some
embodiments, input bus 411 and output bus 431 are a single
bus that includes the functionality of both input bus 411 and
output bus 431. In various embodiments, input bus 411 and
output bus 431 are wide data buses that allow the transfer of
multiple data elements in parallel. For example, input bus
411 may be 96x32 bits wide and output bus 431 may be 96
bytes wide to accommodate the parallel processing func-
tionality of computational unit 401. In some embodiments,
vector computational unit 401 receives vector computational
unit instructions via input bus 411. In some embodiments,
vector computational unit 401 receives vector computational
unit instructions via a communication channel other than
input bus 411 such as an instruction bus (not shown).
[0053] In various embodiments, vector computational unit
401 is vector engine 111, 211, and/or 311 of FIGS. 1, 2, and
3, respectively. In some embodiments, input bus 411 is
connected to matrix processor 107 of FIG. 1, vector engine
input queue 207 of FIG. 2, and/or memory 307 of FIG. 3. In
some embodiments, output bus 431 is connected to post-
processing units 115, 215, and/or 315 of FIGS. 1, 2, and 3,
respectively. In various embodiments, vector computational
unit 401 is bi-directionally coupled to a control unit (not
shown) of microprocessor system 400 external to vector
computational unit 401, such as control units 101, 201,
and/or 301 of FIGS. 1, 2, and 3, respectively. In various
embodiments, the control unit of microprocessor system 400
sends vector computational unit instructions to vector com-
putational unit 401. In some embodiments, the control unit
of microprocessor system 400 includes one or more
sequencers for synchronizing instructions and data to vector
computational unit 401.

[0054] In the example shown, vector computational unit
401 includes registers 421, vector engine control logic 423,
input buffer 425, arithmetic logic units (ALUs) 427, and
output buffer 429. Input data from input bus 411 is received
by input buffer 425 and output written to output bus 431 is
written from output buffer 429. In some embodiments, input
buffer 425 and output buffer 429 are data buffers or caches
and provide memory synchronization functionality. For
example, in some embodiments, input reads from input bus
411 and/or output writes to output bus 431 have an unpre-
dictable latency that can be smoothed out by utilizing input
buffer 425 to receive input data and output buffer 429 for
storing calculated results. As another example, output bus
431 may not be available when output from ALUs 427 is
ready for writing. In some embodiments, output buffer 429
allows ALUs 427 to continue processing pending data until
output bus 431 is available for writing the results stored at
output buffer 429. In various embodiments, input bus 411
and output bus 431 are communication channels controlled
by a control unit (not shown) of microprocessor system 400.
[0055] As described above, in various embodiments, a
vector computational unit includes a plurality of processing

Jan. 24, 2019

elements. In some embodiments, each processing element
includes individual functionality for loading data, storing
data, and performing arithmetic logic unit operations. The
individual processing elements are not depicted in the block
diagram of FIG. 4A. In various embodiments, arithmetic
logic units (ALUs) 427 include the corresponding arithmetic
logic unit (ALU) of each processing unit. Similarly, input
buffer 425 and output buffer 429 include corresponding
input buffers and output buffers for each processing unit. In
various embodiments, ALLUs 427 include ALU logic for
processing every element of an input vector to vector
computational unit 401 in parallel. In some embodiments,
ALUs 427 include logic for quantizing the ALU result. In
various embodiments, the ALU logic, for example, logic for
performing a non-linear function and quantization, can be
performed in response to a single processor instruction.

[0056] In various embodiments, registers 421 includes
registers for implementing the functionality of vector com-
putational unit 401. For example, registers 421 may be used
to store operands for performing vector computational unit
instructions, to implement bit masks, and to reference vector
elements using different memory-sized register aliases,
among other appropriate functionality. In some embodi-
ments, registers 421 include arithmetic instruction vector
registers; mask registers; registers for performing arithmetic
operations such as add, subtract, and floating point opera-
tions; and/or registers for aliasing vector elements. In some
embodiments, the registers used for aliasing vector elements
are also utilized for performing arithmetic operations.

[0057] In some embodiments, registers 421 include arith-
metic instruction vector registers. For example, registers
may be used as operands for load operations, store opera-
tions, and arithmetic logic unit (ALU) operations. As
another example, in some embodiments, an ALU operation
may take as arguments up to four vector registers, three as
source registers and one as a destination register. In various
embodiments, the vector registers used by processor opera-
tions are aliased to different vector elements based on the
size of the vector element. For example, in some embodi-
ments, a different set of vector registers are available for
operating on 8-bit, 16-bit, 32-bit, and/or floating point
values. In some embodiments, the set of vector registers for
32-bit values is also used for floating point values. In various
embodiments, 32-bit vector registers are aliased to 16-bit
vector registers and 8-bit vector registers. For example, one
32-bit vector register is aliased to two 16-bit vector registers
and four 8-bit vector registers. As another example, a vector
computational unit 401 with eight 96x32-bit vector registers
(registers RD0-RD7) is aliased to sixteen 96x16-bit vector
registers (registers RW0-RW15), and thirty-two 96x8-bit
vector registers (registers RB0-RB31). RDO0 is a 96x32-bit
vector register, RW0 is a 96x16-bit vector register, and RB0
is a 96x8-bit vector register. A further example of vector
register aliasing is depicted in FIG. 4B.

[0058] Insome embodiments, registers 421 include one or
more bit mask registers based on the number of processing
elements of vector computational unit 401. For example, a
vector computational unit with 96 processing elements may
include one or more 96-bit mask registers. In various
embodiments, a mask register may be set by loading a
bit-mask from memory. A mask register may be used to store
the results of logical operations performed on input data to
vector computational unit 401.

US 2019/0026250 Al

[0059] In some embodiments, registers 421 include reg-
isters for performing arithmetic operations such as add,
subtract, and floating point operations. For example, in some
embodiments, vector computational unit 401 includes reg-
isters for storing carry-out bits for vector add and subtract
instructions and status bits corresponding to floating point
instructions.

[0060] In some embodiments, vector computational unit
401 includes an instruction buffer (not shown) for storing a
sequence of vector computational unit instructions. In some
embodiments, the instruction buffer is a command queue. In
various embodiments, the instruction buffer includes one or
more pointers to reference the current and/or last instruction
to be performed. In various embodiments, the instruction
buffer acts as a cache of vector computational unit instruc-
tions. For example, one or more vector computational unit
instructions are loaded into an instruction buffer of vector
computational unit 401 and cached until the instructions can
be executed. As instructions are executed and no longer
needed, new instructions may be loaded into the instruction
buffer. In some embodiments, the vector computational unit
instructions are received from an external instruction com-
mand queue via a control logic (not shown) of micropro-
cessor system 400.

[0061] In some embodiments, vector computational unit
401 includes a vector engine control logic 423. Vector
engine control logic 423 is utilized to implement the func-
tionality of the vector computational unit 401 including
fetching vector computational unit instructions, decoding
the instructions, and/or executing the instructions. In various
embodiments, the vector engine control logic 423 includes
logic for reading, writing, masking, and/or aliasing the data
via input buffer 425, output buffer 429, and registers 421. In
some embodiments, vector computational unit 401 receives
a dequeue ready signal and determines using vector engine
control logic 423 that data is available via input bus 411. For
example, vector engine control logic 423 may dequeue data
from an input first-in-first-out queue (not shown) attached to
input bus 411 on receipt of a dequeue ready signal.

[0062] FIG. 4B is atable illustrating an exemplary aliasing
of vector registers. Table 450 illustrates the aliasing of
vector registers for a vector computational unit embodiment
with eight 96x32-bit vector registers (registers RD0-RD7)
aliased to sixteen 96x16-bit vector registers (registers RW0-
RW15), and thirty-two 96x8-bit vector registers (registers
RB0-RB31). In some embodiments, the vector registers in
Table 450 are the vector registers of registers 421 of vector
computational unit 401 of FIG. 4A. In the example shown,
row 451 includes columns for the bytes 0, 1, 2, and 3 that are
aliased to the respective registers listed in the rows below it.
Rows 453, 463, and 473 correspond to 96x32-bit vector
registers RD0, RD1, and RD7. Rows 455, 465, and 475
correspond to 96x16-bit vector registers RW0-3 and RW14-
15. Rows 457, 467, and 477 correspond to 96x8-bit vector
registers RB0-7 and RB28-31. In the example, bytes 0-3 are
one of the 96 lanes of a vector computational unit such as
vector engine 111, 211, and/or 311 of FIGS. 1, 2, and 3,
respectively.

[0063] In the example shown, table 450 illustrates vector
register aliasing for a single lane of the 96 lanes of a vector
computational unit embodiment. The 96x32-bit vector reg-
ister RDO utilizes four bytes ordered from byte 0 to byte 3.
The 96x16-bit vector registers RW0 and RW1 are aliased to
2 bytes each. Vector register RW0 is aliased to byte 0 and

Jan. 24, 2019

byte 1 and vector register RW1 is aliased to byte 2 and byte
3. The 96x8-bit vector registers RB0-RB3 are aliased to 1
byte each corresponding to bytes 0-3, respectively. Simi-
larly, the 96x32-bit vector register RD1 is aliased to the
96x16-bit vector registers RW2 (bytes 0 and 1) and RW3
(bytes 2 and 3), and the 96x8-bit vector registers RB4-RB7
for bytes 0-3, respectively. As another example, the 96x32-
bit vector register RD7 is aliased to the 96x16-bit vector
registers RW14 (bytes 0 and 1) and RW15 (bytes 2 and 3),
and the 96x8-bit vector registers RB28-RB31 for bytes 0-3,
respectively.

[0064] In various embodiments, vector computational unit
instructions operate on all 96 lanes of a vector register in
parallel. For example, for each of the 96 lanes, vector
register RB0 operates on byte 0, vector register RB5 oper-
ates on byte 1, vector register RW2 operates on bytes 0 and
1, vector register RW15 operates on bytes 2 and 3, and
vector register RD7 operates on bytes 0-3 in parallel.
[0065] FIG. 5 is a flow diagram illustrating an embodi-
ment of a process for determining processor instructions for
a microprocessor system. In some embodiments, the process
of FIG. 5 converts a software program written with a high
level programming language into a sequence of computa-
tional array and vector computational unit instructions for a
microprocessor system with a computational array and a
vector computational unit. In various embodiments, the
microprocessor system is microprocessor system 100 of
FIG. 1, a computational array is matrix processor 107 of
FIG. 1, and a vector computational unit is vector engine 111
of FIG. 1. In various embodiments, the process of FIG. 5 is
utilized to implement applications relying on machine learn-
ing including applications that perform inference using a
machine learning model such as self-driving and driver-
assisted automobiles.

[0066] At 501, a determination is made on the processing
to be performed and the subset of processing to be assigned
to different co-processing components such as a computa-
tional array, a vector computational unit, and/or a post-
processing unit. In various embodiments, the processing is
assigned based on the functionality and efficiency of the
different co-processing components. For example, certain
matrix-related operations are assigned to a computational
array and operations involving non-linear functions such as
activation functions may be assigned to a vector computa-
tional unit. In some embodiments, pooling operations are
assigned to a post-processing unit. As another example, in
some embodiments, at 501, a determination is made that a
convolution operation requires a dot-product operation and
that the dot-product operation best utilizes matrix processing
performed by a computational array. In some embodiments,
this determination is performed by compiling a machine
learning application to target the microprocessor system
described herein.

[0067] At 503, one or more matrix processor instructions
are determined that correspond to the processing determined
and assigned at 501. For example, the dot-product operation
determined at 501 to be performed by a matrix processor is
converted to one or more matrix processer instructions. In
various embodiments, the matrix processor instructions are
computational array instructions. As an example, the com-
putational array instructions may require that one or more
data vectors are received from a data input component, such
as data input 103 of FIG. 1, and one or more weight vectors
are received from a corresponding weight input component,

US 2019/0026250 Al

such as weight input 105 of FIG. 1. Additional computa-
tional array instructions may include the multiply, accumu-
late, and shift operations for processing a dot-product opera-
tion. For example, one or more dot-product component
operations may be used to calculate a dot-product result. In
various embodiments, the computational array instructions
are directed to processing performed on received input data
by the corresponding computation units of the computa-
tional array. In some embodiments, additional computa-
tional array instructions include instructions for preparing
the dot-product result for processing by the vector compu-
tational unit.

[0068] At 505, a determination is made regarding the
vector engine instructions to be performed by the vector
computational unit. For example, operations related to an
activation function determined at 501 to be performed by a
vector engine are converted to one or more vector engine
instructions. In various embodiments, the vector engine
instructions are vector computational unit instructions. As an
example, the vector computational unit instructions may
require that one or more data vectors are received from a
computational array, such as matrix processor 107 of FIG. 1.
Additional vector computational unit instructions may
include operations for performing a non-linear activation
function, such as a rectified linear unit (RelLu) function. In
various embodiments, the vector computational unit instruc-
tions are directed to processing performed on received input
data by the corresponding processing elements of the vector
computational unit. In some embodiments, additional vector
computational unit instructions include instructions for pre-
paring the result of the processing elements for post-pro-
cessing by the post-processing unit.

[0069] In various embodiments, each vector computa-
tional unit instruction is a single processor instruction that
specifies a plurality of component instructions to be
executed together by the vector computational unit. The
execution of the plurality of component instructions is
performed by the processing elements of the vector compu-
tational unit in parallel on different data input elements in
response to a single vector computational unit instruction.
For example, in some embodiments, a single processor
instruction includes three component instructions: a separate
load, arithmetic logic unit, and store instruction. The three
component instructions are received and executed by the
vector computational unit. In some embodiments, the bun-
dling of component instructions into a single processing
instruction is performed at 505. In various embodiments, the
order and selection of component instructions for bundling
into a vector computational unit instruction is based on
determined data hazards.

[0070] At 507, a determination is made regarding the
post-processing instructions to be performed by the post-
processing unit. For example, operations related to post-
processing functionality are determined at 501 to be per-
formed by a post-processing unit and are converted to one or
more post-processing instructions. As an example, the post-
processing instructions may require that one or more data
vectors are received from a vector computational unit, such
as vector engine 111 of FIG. 1. Additional post-processing
instructions may include operations for performing pooling
layer functionality, such as a maxpooling. In various
embodiments, post-processing instructions may include
instructions for configuring the pooling functionality such as
kernel size, stride, and/or spatial extent, among others. In

Jan. 24, 2019

some embodiments, additional post-processing instructions
include instructions for preparing and writing out the results
of post-processing.

[0071] At 509, the sequence corresponding to the execu-
tion of the collection of co-processor instructions deter-
mined at 503, 505, and 507 is scheduled. For example, the
relative order and/or sequence of the respective processor
instructions for the various co-processors, such as compu-
tational array, a vector computational unit, and/or a post-
processing unit, is determined. In some embodiments, the
sequence depends on the interaction and dependencies
between the co-processors. For example, the input to a
vector computational unit may depend on the availability of
output results from a computational array. In various
embodiments, dependencies including data hazards are
determined and accounted for. For example, in various
embodiments, vector computational unit instructions
include a plurality of component instructions and can be
executed such that multiple vector computational unit
instructions are executed in parallel. Data hazards based on
unavailable data resources are determined and accounted
for. For example, no-ops may be inserted into the component
instructions of a vector computational unit instruction to
allow a load operation to complete before an arithmetic logic
unit operation that depends on the completion of the load
operation is performed. In some embodiments, the bundling
of component instructions into a single vector computational
unit instruction is determined at 509. In some embodiments,
some or all of the instruction scheduling, such as the
ordering of co-processor instructions, is performed at 503
and 505 for a matrix processor and vector engine, respec-
tively. For example, in some embodiments, the bundling of
component instructions for each single vector computational
unit instruction is determined at 505.

[0072] In some embodiments, a control unit and/or one or
more sequencers of a microprocessor system are utilized to
initiate and coordinate the processing of the collection of
co-processor instructions. For example, the instruction
sequence determined at 509 is utilized by a control unit, such
as control unit 101 of FIG. 1, and/or by one or more
sequencers to issue the corresponding co-processor instruc-
tions to a computational array such as matrix processor 107
of FIG. 1, a vector computational unit such as vector engine
111 of FIG. 1, and/or a post-processing unit such as post-
processing unit 113 of FIG. 1. In some embodiments, the
functionality of one or more sequencers is performed by a
control unit. For example, in some embodiments, the control
unit includes an execute sequencer, memory access sequenc-
ers, network sequencers, and/or vector engine sequencers,
among others.

[0073] FIG. 6A is a flow diagram illustrating an embodi-
ment of a process for the running execution of a vector
computational unit. The process of FIG. 6A may be per-
formed by a vector computational unit to process elements
of a vector in parallel. In various embodiments, a vector
computational unit is vector engine 111, 211, 311, and/or
vector computational unit 401 of FIGS. 1, 2, 3, and 4A,
respectively. In some embodiments, the process of FIG. 6A
is initiated by a control unit such as control unit 101 of FIG.
1. In various embodiments, the transition between the steps
of the process in FIG. 6A is performed by a control logic of
the vector computational unit such as vector engine control
logic 423 of FIG. 4A.

US 2019/0026250 Al

[0074] At 601, a vector engine instruction is retrieved. In
various embodiments, a vector engine instruction is a vector
computational unit instruction and specifies a plurality of
component instructions. For example, an instruction triad is
a single vector computational unit instruction specifying up
to three component instructions. An example instruction
triad includes a load operation, an arithmetic logic unit
operation, and a store operation as a single instruction. At
601, once the instruction is retrieved, the process continues
to both 603 and 605.

[0075] At 603, a determination is made as to whether
additional instructions are pending. For example, the next
vector engine instruction may be available and ready for
retrieving. As another example, an instruction buffer for
caching pending instructions may be empty and requires
retrieving and/or waiting for the next available instruction.
In some embodiments, the availability of additional instruc-
tions is based on inspecting a pointer referencing the last
valid instruction in the instruction buffer. Processing pro-
ceeds to step 609 in response to no available additional
instructions. Processing proceeds back to 601 in response to
the availability of one or more additional instructions.

[0076] At 605, the vector engine instruction retrieved at
601 is decoded. In various embodiments, a single vector
engine instruction specifies one or more component instruc-
tions. In various embodiments, the instruction and the com-
ponent instructions are decoded. For example, an instruction
triad containing a load, an arithmetic logic unit, and a store
component instruction is decoded into the separate compo-
nent operations. In some embodiments, the decoding deter-
mines both the opcode and the arguments corresponding to
the opcode for each component operation. As one example,
a load component instruction contains both the opcode
corresponding to a byte vector dequeue operation and the
corresponding destination vector register to store the vector
of bytes as a result of the dequeue. As another example, an
add component instruction contains both the opcode corre-
sponding to a signed 16-bit add operation and the corre-
sponding vector registers for the source and destination
arguments.

[0077] At 607, the instruction decoded at 605 is executed.
In some embodiments, a single vector engine instruction,
which specifies multiple component instructions, is executed
by the processing elements of the vector computational unit.
For example, a vector of processing elements executes the
single vector engine instruction decoded at 605. In some
embodiments, each of the component instructions of the
single vector engine instruction is further executed in par-
allel by each of the processing eclements. For example, for
each processing element, a load instruction and an arithme-
tic logic unit instruction may be executed in parallel. In
some embodiments, a load instruction, an arithmetic logic
unit instruction, and a store instruction may be executed in
parallel. For example, the following component operations
are performed in parallel by each processing cell of the
vector engine: a vector of input data is loaded from an input
accumulator into a vector register, a floating point multiply
operation is performed on two different vector registers by
an arithmetic logic unit (ALU), and a vector of 16-bit
elements is stored from a vector register to memory. In
various embodiments, once the processing elements have
finished execution of component instructions, the processing
for the vector engine instruction is complete.

Jan. 24, 2019

[0078] At 609, the vector computational unit waits for the
next instruction. For example, the vector computational unit
waits until an instruction buffer for caching pending instruc-
tions contains a valid instruction to be executed. As another
example, the vector computational unit waits until the next
instruction is received from memory and made available to
the vector computational unit. In some embodiments, the
vector computational unit halts at 609 pending the avail-
ability of an additional instruction. In various embodiments,
the vector computational unit may respond to interrupts at
609 while waiting for an additional instruction. In response
to the arrival of an additional instruction, processing con-
tinues back to 601.

[0079] FIG. 6B is a flow diagram illustrating an embodi-
ment of a process for processing vector data by a vector
computational unit. For example, FIG. 6B illustrates the
process applied to vector data received by a vector compu-
tational unit from an input source such as a computational
array and/or a first-in-first-out (FIFO) queue. In some
embodiments, the process of FIG. 6B illustrates the steps
performed by a vector computational unit for performing a
vector operation on a vector input to compute a vector result.
In various embodiments, the process of FIG. 6B utilizes a
plurality of processing elements of a vector computational
unit to perform processing on elements of a vector in
parallel. In various embodiments, vector computational unit
is vector engine 111, 211, 311, and/or vector computational
unit 401 of FIGS. 1, 2, 3, and 4A, respectively.

[0080] At 651, a load operation is decoded and issued. In
some embodiments, a load operation is required to receive
data into a vector computational unit. For example, in some
embodiments, a dequeue operation is a load operation that
dequeues a vector of data elements from a computational
array to be received by the processing elements of the vector
computational unit. In various embodiments, the load opera-
tion may be one of multiple component instructions that
make up a single vector computational unit instruction. The
decoding of the load operation determines the specific type
of load operation and the appropriate operations. For
example, various load operations exist to load different sized
vector elements into different specified vector registers. At
651, the load operation is decoded and issued to initiate the
receiving of input data such as the dequeuing of a vector of
data results from a first-in-first-out (FIFO) queue.

[0081] At 653, the vector computational unit receives
input data in the form of a vector as a result of the load
operation issued at 651. For example, the vector computa-
tion unit receives a vector of input data elements from a
computational array, such as matrix processor 107 of FIG. 1,
a first-in-first-out (FIFO) queue, such as vector engine input
queue 207 of FIG. 2, or other appropriate data source. In
some embodiments, the input data is stored in an input
buffer. In some embodiments, the input buffer utilizes a set
of flip-flops and/or one or more accumulators to store the
input data. An input buffer the size of the input vector may
be utilized to store the input data so that it can be loaded into
one or more vector registers at step 655.

[0082] At 655, vector data received at 653 is loaded into
the appropriate registers. For example, the vector data read
at 653 is loaded into the vector registers designated by the
load instruction. In some embodiments, register aliasing is
used to determine how data is loaded into a vector register.
For example, data may be loaded into the same register’s
memory location but aligned to byte, half-word, or word

US 2019/0026250 Al

boundaries based on the instruction and aliased registers
utilized. In some embodiments, the loading of vector data
into vector registers utilizes a bit mask, such as a vector bit
mask, to determine which bytes of a vector to load into
which register memory locations. For example, a 96-bit
mask may be utilized to determine which elements of a
vector register should receive data.

[0083] At 657, a determination is made on whether addi-
tional data is needed. For example, based on the current
vector computational unit instruction, additional data may
be needed before performing an arithmetic logic unit (ALU)
operation. In response to not needing additional data, pro-
cessing continues to 661. As an example, processing con-
tinues to 661 in the event the current vector computational
unit instruction includes an ALU component operation (such
as an add operation) that is not a no-op operation. In
response to needing additional data, for example, a load
operation is pending and no ALU operation is pending,
processing continues to 659. In some embodiments, an
instruction triad may replace an AL U operation with a no-op
indicating that an ALU operation should not be performed
for the current instruction.

[0084] At 659, additional data is loaded into the vector
computational unit for processing. For example, additional
input data, such as a vector of input weights, may be loaded
by reading memory, receiving the result of a matrix proces-
sor, dequeuing a first-in-first-out (FIFO) queue, or other
appropriate technique. In some embodiments, additional
data may be loaded by reading a memory such as a static
random access memory (SRAM). In various embodiments,
additional components such as a read buffer may be utilized
to synchronize the loading of data and/or to account for read
delays and latency. In various embodiments, the data loaded
at 659 may be a vector of input data, such as a vector of
weight inputs.

[0085] At 661, a vector arithmetic logic unit (ALU) opera-
tion is performed. In various embodiments, vector ALU
operations include vector operations for add (signed and
unsigned), subtract (signed and unsigned), multiply, abso-
lute value, and logical operators, among others. Vector ALU
operations may be performed on different operand sizes.
Example operand sizes include 8-bit, 16-bit, 32-bit, and
floating point values. In some embodiments, the different
operand sizes are determined based on register aliasing
and/or the opcode of the operation. For example, a vector
add operation on 8-bit operands utilizes 8-bit vector regis-
ters. As explained in more detail with respect to FIGS. 4A
and 4B, register aliasing allows the same memory location
to be referenced using different aliases. For example, a
32-bit block of memory can be referenced as a single 4-byte
operand, two 2-byte operands, or four 1-byte operands
depending on the desired result. In various embodiments,
each processing element of the vector computational unit
performs the same ALU operation (e.g., add, subtract, mul-
tiply, etc.) in parallel with the other processing elements. In
some embodiments, the output result is a quantized version
of the ALU result. For example, the output result is a
quantized version that requires fewer bits to represent than
the ALU result. In some embodiments, the ALU result is
calculated using a result represented using fewer bits than
the input operands. For example, input operands may be
4-bytes each and an output result may be 1-byte in size.
[0086] At 663, the vector result of the arithmetic logic unit
(ALU) operation performed at 661 is written out of the

Jan. 24, 2019

vector computational unit. In some embodiments, the vector
result is written out utilizing an output buffer that allows
processing to continue for the next ALU operation in the
event the output bus is not available to receive data. In some
embodiments, the vector output result is transferred to a
post-processing unit such as post-processing units 115, 215,
and/or 315 of FIGS. 1, 2, and 3, respectively. For example,
the result of performing an ALU operation is written to a
post-processing unit for performing post-processing pooling
operations. In some embodiments, the output vector result is
written to memory such as static random access memory
(SRAM). In various embodiments, the output is written out
as a vector of elements such as a 96-element vector with
each element having the size of 1 byte.

[0087] FIG. 7 is a block diagram illustrating an embodi-
ment of an encoding format for a vector computational unit
instruction. In the example shown, vector computational unit
instruction 710 depicts the encoding of multiple component
instructions specified by a single instruction. Vector com-
putational unit instruction 740 further details the format of
each of the multiple component instructions specified by a
single instruction. Vector computational unit instruction 710
is an encoded instruction triad and includes load operation
711, arithmetic logic unit (ALU) operation 713, and store
operation 715. Vector computational unit instruction 740
includes fields: opcode 741, register 743, opcode 751, reg-
isters 753, opcode configuration field 755, immediate field
757, opcode 761, and register 763. The fields for component
instructions (corresponding to a load operation, ALU opera-
tion, and store operation) depicted by vector computational
unit instruction 710 map to vector computational unit
instruction 740. Vector computational unit instruction 740
includes an encoded load operation (opcode 741 and register
743), arithmetic logic unit operation (opcode 751, registers
753, opcode configuration field 755, and immediate field
757), and store operation (opcode 761 and register 763).

[0088] In some embodiments, a vector computational unit
instruction is an instruction triad specifying three component
instructions. For example, a load operation, arithmetic logic
unit (ALU) operation, and store operation may be bundled
into a single instruction using a 128-bit format. In various
embodiments, a larger or smaller bit format may be utilized
to bundle the three component instructions as appropriate. In
some embodiments, load and store operations are encoded
into 13 bits and ALU operations are encoded into 64 bits. In
various embodiments, any remaining bits not used by the
bundled load, store, and ALU operations are padding bits. In
some embodiments, opcodes are encoded into 8 bits, regis-
ters are encoded into 5 bits, and immediate fields are
encoded into 32 bits. In various embodiments, different
length encodings may be utilized as appropriate and are
based on the instruction size, number of supported vector
operations, number of registers, vector size, and/or other
appropriate factors. In some scenarios, a no-op operation is
used when one or more of the component instructions are not
utilized.

[0089] In the example shown, the encoded load operation
of vector computational unit instruction 740 includes opcode
741 and register 743. Opcode 741 corresponds to a vector
load operation and register 743 is the corresponding desti-
nation vector register for the load operation. For example,
opcode 741 may be used to store the opcode for a dequeue
operation that loads data and register 743 is the destination
register for storing the loaded data. In various embodiments,

US 2019/0026250 Al

the load operation is used to load a vector of input data into
a vector register for processing by a vector computational
unit. In some embodiments, opcode 741 is an 8-bit field and
register 743 is a 5-bit field.

[0090] In the example shown, the encoded store operation
of vector computational unit instruction 740 includes opcode
761 and register 763. Opcode 761 corresponds to a vector
store operation and register 763 is the corresponding source
vector register for which the store operation should read a
vector of data from. For example, opcode 761 may be used
to store the opcode for a store operation that stores data from
register 763 to external memory such as static random
access memory (SRAM). In some embodiments, the start
address of the memory used for storing is maintained by an
external sequencer or control unit using a write pointer to
reference a memory location. In some embodiments, the
store operation is used to write a vector of data to an output
data bus. In some embodiments, opcode 761 is an 8-bit field
and register 763 is a 5-bit field.

[0091] Inthe example shown, the encoded arithmetic logic
unit (ALU) operation includes opcode 751, registers 753,
opcode configuration field 755, and immediate field 757.
Opcode 751 is used to encode an ALLU opcode. For example,
ALU opcodes may include opcodes that correspond to
vector operations for add (signed and unsigned), subtract
(signed and unsigned), multiply, absolute value, and logical
operators, among others. Depending on the vector ALU
operation, the operation may utilize fields: registers 753,
opcode configuration field 755, and immediate field 757. In
some embodiments, registers 753 specifies up to four vector
registers including three source registers and one destination
register. In some embodiments, registers 753 is a 20-bit field
and utilizes 5 bits for each register.

[0092] Insome embodiments, an encoded arithmetic logic
unit (ALU) operation includes opcode configuration field
755 that is utilized by certain ALU operations. In some
embodiments, opcode configuration field 755 is a 5-bit field
and includes a register size field (2-bits), a mask bit (1-bit),
and an immediate valid bit (1-bit). For example, in some
scenarios, the value stored in the register size field (2-bits)
may be used to specify the size of the registers (e.g., 8-bits,
16-bits, or 32-bits). As additional examples, a mask bit
(1-bit) may be utilized to process immediate field 757 as a
bit mask and an immediate valid bit (1-bit) may be utilized
to identify the validity of immediate field 757. In various
embodiments, immediate field 757 is a 32-bit field that is
utilized for ALU operations that require an immediate field.
For example, a vector move operation may be configured to
move a 32-bit value from immediate field 757 to a destina-
tion vector register.

[0093] In some embodiments, a vector computational unit
supports a vector mask move instruction (not shown) to load
a vector bit mask into a vector mask register. In some
embodiments, a vector mask move instruction includes a
corresponding opcode field, a destination register field, and
an immediate field. As an example, the vector mask move
loads a vector bit mask stored in the immediate field to the
vector mask register. In some embodiments, the size of the
vectors (e.g., 96 elements wide) supported by the vector
computational unit requires a large enough immediate field
(e.g., 96-bits) to store the bit mask. In some embodiments,
the vector mask move instruction is not restricted to the
encoding formats of vector computational unit instructions
710 and 740. For example, based on the size of the imme-

Jan. 24, 2019

diate field, the vector mask move may not be bundled with
other component instructions.

[0094] In various embodiments, the component instruc-
tions of vector computational unit instructions are bundled
together using the process of FIG. 5. In some embodiments,
the encoding format of FIG. 7 is utilized by a vector
computational unit such as vector engine 111, 211, 311,
and/or vector computational unit 401 of FIGS. 1, 2, 3, and
4A, respectively. In some embodiments, a vector computa-
tional unit instruction is issued to a vector computational
unit by a sequencer of a microprocessor system or control
unit containing a sequencer.

[0095] FIG. 8 is a flow diagram illustrating an embodi-
ment of a process for performing a single vector computa-
tional unit instruction by a vector computational unit. The
process of FIG. 8 may be performed by a vector computa-
tional unit on elements of a vector in parallel utilizing the
processing elements of a vector computational unit. In some
embodiments, the process of FIG. 8 is performed by a vector
computational unit such as vector engine 111, 211, 311,
and/or vector computational unit 401 of FIGS. 1, 2, 3, and
4A, respectively.

[0096] At 801, a vector computational unit instruction is
fetched. In some embodiments, the instruction is fetched
from an instruction buffer and/or command queue. In vari-
ous embodiments, the instruction buffer includes one or
more pointers to reference the current instruction to be
performed. In various embodiments, the instruction buffer
acts as a cache of vector computational unit instructions.
[0097] At 821, the vector computational unit instruction is
decoded. For example, a vector computational unit instruc-
tion that is an instruction triad is decoded into its three
component instructions. In various embodiments, the argu-
ments and fields utilized by each component instruction are
decoded. For example, vector registers specified by a reg-
isters field, such as registers 753 of FIG. 7, are decoded into
source and destination registers.

[0098] At 831, the component instructions are issued. In
some embodiments, the issuing of component instructions
includes determining whether a resource and/or data hazards
are present. In the event hazards are present, in some
embodiments, the vector computational unit waits for the
hazard to be resolved. For example, in the event of a
resource hazard caused by a load operation in the previous
clock cycle, the vector computational unit waits one or more
clock cycles for the load to complete and for the resource to
be available.

[0099] In some embodiments, the multiple component
instructions are issued together and executed in parallel. For
example, the load operation, arithmetic logic unit (ALU)
operation, and store operation of an instruction triad are
executed together and during the same clock cycle. In the
scenario where the component instructions are executed
together, each of the steps corresponding to executing a load
operation (step 845), an ALU operation (step 855), and a
store operation (step 865) along with corresponding no-op
alternatives (steps 843, 854, and 863) are initiated in the
same clock cycle and execution proceeds in parallel.
[0100] In some embodiments, the different component
instructions are executed with staggered starts. For example,
in some embodiments, the load operation is executed first,
followed by the arithmetic logic unit (ALU) operation, and
then the store operation. In a staggered scenario, the ALU
operation of a first vector computational unit instruction may

US 2019/0026250 Al

execute in parallel with the load operation of the next vector
computational unit instruction.

[0101] In various embodiments, different operations,
including different arithmetic logic unit (ALU) operations,
take one or more clock cycles to complete and there is no
guarantee that the different operations complete by the end
of'the same clock cycle. In some embodiments, one or more
of the fetch (801), decode (step 821), and issue (step 831)
steps may be performed during the same instruction cycle.
[0102] At 841, a determination is made on whether the
vector computational unit instruction includes a load opera-
tion. For example, in some scenarios, a load operation may
be replaced with a no-op to indicate that no load operation
should be performed. In response to a no-op, processing
continues to 843. In the event that a load operation exists,
processing continues to 845.

[0103] At 843, a no-op is processed and no load operation
is performed. For example, a load instruction was not
present in the instruction at 841 and instead the opcode for
a no-op was used.

[0104] At 845, a load operation is executed by the vector
computational unit. For example, a dequeue operation to
load an input vector from a first-in-first-out queue, such as
vector engine input queue 207, is performed.

[0105] At 851, a determination is made on whether the
vector computational unit instruction includes an arithmetic
logic unit (ALU) operation. For example, in some scenarios,
an ALU operation may be replaced with a no-op to indicate
that no ALU operation should be performed. In response to
a no-op, processing continues to 853. In the event that an
ALU operation exists, processing continues to 855.

[0106] At 853, a no-op is processed and no arithmetic
logic unit (ALU) operation is performed. For example, an
ALU instruction was not present in the instruction at 851 and
instead the opcode for a no-op was used.

[0107] At 855, an arithmetic logic unit (ALU) operation is
executed by the vector computational unit. For example, in
response to a vector add operation, the arithmetic logic unit
of a vector computational unit performs a vector add opera-
tion to add the contents of two source vector registers and
store the result in a destination vector register. In some
embodiments, the arithmetic logic unit of the vector com-
putational unit is arithmetic logic units (ALUs) 427 of FIG.
4A.

[0108] At 861, a determination is made on whether the
vector computational unit instruction includes a store opera-
tion. For example, in some scenarios, a store operation may
be replaced with a no-op to indicate that no store operation
should be performed. In response to a no-op, processing
continues to 863. In the event that a store operation exists,
processing continues to 865.

[0109] At 863, a no-op is processed and no store operation
is performed. For example, a store instruction was not
present in the instruction at 861 and instead the opcode for
a no-op was used.

[0110] At 865, a store operation is executed by the vector
computational unit. For example a store operation to store
the vector data in a vector register to memory is performed.
[0111] FIG. 9 is a diagram illustrating an exemplary
instruction cycle of a vector computational unit. The process
of FIG. 9 illustrates an example ordering and sequence of
three vector computational unit instructions performed in
parallel but with staggered starts. In some embodiments, the
exemplary instruction cycle of FIG. 9 is utilized by vector

Jan. 24, 2019

engine 111, 211, 311, and/or vector computational unit 401
of FIGS. 1, 2, 3, and 4A, respectively. In the example of FIG.
9, the component instructions bundled as a single instruction
are executed with staggered starts such that a load operation
is executed first, followed by an arithmetic logic unit (ALU)
operation, and then a store operation. In some embodiments,
sequential vector computational unit instructions are pipe-
lined but the component instructions are executed in parallel
and do not follow the staggered starts depicted in FIG. 9.

[0112] In the example shown, a first instruction cycle 910
includes fetch step 911, a decode step 921, an issue step 931,
a load execution step 941, an arithmetic logic unit (ALU)
execution step 951, and a store execution step 961 corre-
sponding to the first vector computational unit instruction. A
second instruction cycle 920 includes fetch step 923, a
decode step 933, an issue step 943, a load execution step
953, an arithmetic logic unit (ALU) execution step 963, and
a store execution step 973 corresponding to the second
vector computational unit instruction. A third instruction
cycle 930 includes fetch step 935, a decode step 945, an
issue step 955, a load execution step 965, an arithmetic logic
unit (ALU) execution step 975, and a store execution step
985 corresponding to the third vector computational unit
instruction. In some embodiments, the dotted vertical lines
are clock cycle boundaries. In various embodiments, the
steps within the same clock cycle boundaries are started
during the same clock cycle.

[0113] In some embodiments, the start of instruction
cycles are staggered by one stage. For example, first instruc-
tion cycle 910 is one stage ahead in processing compared to
second instruction cycle 920, and two stages ahead of third
instruction cycle 930. During any given clock cycle, differ-
ent vector computational unit instructions can be utilizing
the hardware resources associated with the different stages:
fetch, decode, issue, load execution, arithmetic logic unit
(ALU) execution, and store execution. As an example, issue
stage 931, decode stage 933, and fetch stage 935 of first,
second, and third instruction cycles 910, 920, and 930,
respectively, execute during the same clock cycle. As
another example, store execution step 961, arithmetic logic
unit (ALU) execution step 963, and load execution step 965
of first, second, and third instruction cycles 910, 920, and
930, respectively, execute during the same clock cycle.

[0114] In some embodiments, the instruction cycle of a
vector computational unit achieves a throughput of one
vector computational unit instruction per clock cycle. In
some embodiments, the fetch, decode, and/or issue steps are
compressed into a single clock cycle. For example, in some
embodiments, an instruction buffer is utilized to minimize
fetch times and a fetch and decode step are performed
together. In some embodiments, each stage of the instruction
cycle may take one or more clock cycles to complete. In
some embodiments, the stages are themselves pipelined. For
example, in the event an execution step takes more than one
cycle to complete, an execution step may be pipelined to
complete over multiple clock cycles. In some embodiments,
multiple execution steps may be processed in parallel in a
pipelined manner and each execution step may correspond
to a different vector computational unit instruction. In some
embodiments, fetch steps 911, 923, and 935 correspond to
step 801 of FIG. 8, decode steps 921, 933, and 945 corre-
spond to step 821 of FIG. 8, issue steps 931, 943, and 955
correspond to step 831 of FIG. 8, load execution steps 941,
953 and 965 correspond to step 845 of FIG. 8, arithmetic

US 2019/0026250 Al

logic unit (ALU) execution steps 951, 963, and 975 corre-
spond to step 855 of FIG. 8, and store execution steps 961,
973, and 985 correspond to step 865 of FIG. 8.

[0115] In an alternative embodiment (not shown), the
fetch, decode, and issues stages of an instruction cycle are
performed in the same order as FIG. 9. In contrast with the
exemplary embodiment of FIG. 9, the load, arithmetic logic
unit (ALU), and store execution steps are executed together
and in parallel during the same clock cycle. For example,
load execution step 941, ALU execution step 951, and store
execution step 961 of the same vector computational unit
instruction are executed together.

[0116] FIG. 10 is a block diagram illustrating an embodi-
ment of a computation unit of a computational array. In the
example shown, computation unit 1000 includes input val-
ues weight 1002, data 1004, and Resultln 1006; signals
ClearAcc signal 1008, Clock signal 1010, ResultEnable
signal 1012, ResultCapture signal 1014, and ShiftEn signal
1016; components accumulator 1024, multiplexer 1026,
shadow register 1028, multiplier 1030, and adder 1032;
logic 1034, 1036, and 1038; and output value ResultOut
1050. In some embodiments, logic 1034, 1036, and 1038 are
AND gates. In some embodiments, additional signals are
included as appropriate. In various embodiments, the com-
putation unit of FIG. 10 is repeated for each of the plurality
of computation units, such as computation unit 109, of a
computation array such as matrix processor 107 of FIG. 1.
Computation unit 1000 may be utilized to implement com-
putational operations in parallel. In various embodiments,
each computation unit of a computational array performs
computations in parallel with the other computation units. In
various embodiments, computation unit 1000 is a sub-circuit
of a matrix processor that includes the functionality for
performing one or more multiply, add, accumulate, and/or
shift operations. For example, computation unit 1000 may
be a sub-circuit that includes the functionality for perform-
ing a dot-product operation. In various embodiments, com-
putation unit 1000 is computation unit 109 of FIG. 1 and/or
computation units 209, and/or 221-229 of FIG. 2.

[0117] In some embodiments, Clock signal 1010 is a clock
signal received by computation unit 1000. In various
embodiments, each computation unit of the computational
array receives the same clock signal and the clock signal is
utilized to synchronize the processing of each computation
unit with the other computation units.

[0118] Inthe example shown, multiplier 1030 receives and
performs a multiplication operation on the input values data
1004 and weight 1002. The output of multiplier 1030 is fed
to adder 1032. Adder 1032 receives and performs an addi-
tion on the output of multiplier 1030 and the output of logic
1034. The output of adder 1032 is fed to accumulator 1024.
In some embodiments, input values data 1004 and weight
1002 are lines that cross computation units and feed the
corresponding data and/or weight to neighboring computa-
tion units. For example, in some embodiments, data 1004 is
fed to all computation units in the same column and weight
1002 is fed to all computation units in the same row. In
various embodiments, data 1004 and weight 1002 corre-
spond to input elements fed to computation unit 1000 from
a data input 103 and a weight input 105, respectively. In
various embodiments, data 1004 and weight 1002 corre-
spond to input elements fed to computation unit 1000 from
a data hardware data formatter and a weight hardware data
formatter, respectively.

Jan. 24, 2019

[0119] In some embodiments, ClearAcc signal 1008 clears
the contents of accumulator 1024. As an example, accumu-
lation operations can be reset by clearing accumulator 1024
and used to accumulate the result of multiplier 1030. In
some embodiments, ClearAcc signal 1008 is used to clear
accumulator 1024 for performing a new dot-product opera-
tion. For example, elements-wise multiplications are per-
formed by multiplier 1030 and the partial-dot-product
results are added using adder 1032 and accumulator 1024.
[0120] In various embodiments, accumulator 1024 is an
accumulator capable of accumulating the result of adder
1032 and indirectly the result of multiplier 1030. For
example, in some embodiments, accumulator 1024 is con-
figured to accumulate the result of multiplier 1030 with the
contents of accumulator 1024 based on the status of Clear-
Acc signal 1008. As another example, based on the status of
ClearAcc signal 1008, the current result stored in accumu-
lator 1024 may be ignored by adder 1032. In the example
shown, accumulator 1024 is a 32-bit wide accumulator. In
various embodiments, accumulator 1024 may be sized dif-
ferently, e.g., 8-bits, 16-bits, 64-bits, etc., as appropriate. In
various embodiments, each accumulator of the plurality of
computation units of a computational array is the same size.
In various embodiments, accumulator 1024 may accumulate
and save data, accumulate and clear data, or just clear data.
In some embodiments, accumulator 1024 may be imple-
mented as an accumulation register. In some embodiments,
accumulator 1024 may include a set of arithmetic logic units
(ALUs) that include registers.

[0121] Insome embodiments, ResultEnable signal 1012 is
activated in response to a determination that data 1004 is
valid. For example, ResultEnable signal 1012 may be
enabled to enable processing by a computation unit such as
processing by multiplier 1030 and adder 1032 into accumu-
lator 1024.

[0122] In some embodiments, ResultCapture signal 1014
is utilized to determine the functionality of multiplexer
1026. Multiplexer 1026 receives as input Resultln 1006,
output of accumulator 1024, and ResultCapture signal 1014.
In various embodiments, ResultCapture signal 1014 is used
to enable either Resultln 1006 or the output of accumulator
1024 to pass through as the output of multiplexer 1026. In
some embodiments, multiplexer 1026 is implemented as an
output register. In some embodiments, Resultln 1006 is
connected to a computation unit in the same column as
computation unit 1000. For example, the output of a neigh-
boring computation unit is fed in as an input value Resultln
1006 to computation unit 1000. In some embodiments, the
input of a neighboring computation unit is the computation
unit’s corresponding ResultOut value.

[0123] In some embodiments, shadow register 1028
receives as input the output of multiplexer 1026. In some
embodiments, shadow register 1028 is configured to receive
the output of accumulator 1024 via multiplexer 1026
depending on the value of ResultCapture signal 1014. In the
example shown, the output of shadow register 1028 is output
value ResultOut 1050. In various embodiments, once a
result is inserted into shadow register 1028, accumulator
1024 may be used to commence new calculations. For
example, once the final dot-product result is stored in
shadow register 1028, accumulator 1024 may be cleared and
used to accumulate and store the partial result and eventually
the final result of a new dot-product operation on new weight
and data input values. In the example shown, shadow

US 2019/0026250 Al

register 1028 receives a signal ShiftEn signal 1016. In
various embodiments, ShiftEn signal 1016 is used to enable
or disable the storing of values in the shadow register 1028.
In some embodiments, ShiftEn signal 1016 is used to shift
the value stored in shadow register 1028 to output value
ResultOut 1050. For example, when ShiftEn signal 1016 is
enabled, the value stored in shadow register 1028 is shifted
out of shadow register 1028 as output value ResultOut 1050.
In some embodiments, ResultOut 1050 is connected to a
neighboring computation unit’s input value Resultln. In
some embodiments, the last cell of a column of computation
units is connected to the output of the computational array.
In various embodiments, the output of the computational
array feeds into a vector engine such as vector engine 111 of
FIG. 1 for vector processing. For example, the output
ResultOut 1050 of a computation cell such as computation
cell 109 of FIG. 1 may be fed into a processing element of
a vector engine such as processing element 113 of vector
engine 111 of FIG. 1.

[0124] In the example shown, shadow register 1028 is
32-bits wide. In various embodiments, shadow register 1028
may be sized differently, e.g., 8-bits, 16-bits, 64-bits, etc., as
appropriate. In various embodiments, each shadow register
of the plurality of computation units of a computational
array is the same size. In various embodiments, shadow
register 1028 is the same size as accumulator 1024. In
various embodiments, the size of multiplexer 1026 is based
on the size of accumulator 1024 and/or shadow register 1028
(e.g., the same size or larger).

[0125] In some embodiments, logic 1034, 1036, and 1038
receive signals, such as control signals, to enable and/or
configure the functionality of computation unit 1000. In
various embodiments, logic 1034, 1036, and 1038 are imple-
mented using AND gates and/or functionality corresponding
to an AND gate. For example, as described above, logic
1034 receives ClearAcc signal 1008 and an input value
corresponding to the value stored in accumulator 1024.
Based on ClearAcc signal 1008, the output of logic 1034 is
determined and fed to adder 1032. As another example, logic
1036 receives ResultEnable signal 1012 and Clock signal
1010. Based on ResultEnable signal 1012, the output of
logic 1036 is determined and fed to accumulator 1024. As
another example, logic 1038 receives ShiftEn signal 1016
and Clock signal 1010. Based on ShiftEn signal 1016, the
output of logic 1038 is determined and fed to shadow
register 1028.

[0126] In various embodiments, computation units may
perform a multiplication, an addition operation, and a shift
operation at the same time, i.e., within a single cycle,
thereby doubling the total number of operations that occur
each cycle. In some embodiments, results are moved from
multiplexer 1026 to shadow register 1028 in a single clock
cycle, i.e., without the need of intermediate execute and save
operations. In various embodiments, the clock cycle is based
on the signal received at Clock signal 1010.

[0127] In various embodiments, input values weight 1002
and data 1004 are 8-bit values. In some embodiments,
weight 1002 is a signed value and data 1004 is unsigned. In
various embodiments, weight 1002 and data 1004 may be
signed or unsigned, as appropriate. In some embodiments,
Resultln 1006 and ResultOut 1050 are 32-bit values. In
various embodiments ResultIn 1006 and ResultOut 1050 are
implemented using a larger number of bits than input
operands weight 1002 and data 1004. By utilizing a large

Jan. 24, 2019

number of bits, the results of multiplying multiple pairs of
weight 1002 and data 1004, for example, to calculate a
dot-product result, may be accumulated without overflowing
the scalar result.

[0128] In some embodiments, computation unit 1000 gen-
erates an intermediate and/or final computation result in
accumulator 1024. The final computation result is then
stored in shadow register 1028 via multiplexer 1026. In
some embodiments, multiplexer 1026 functions as an output
register and store the output of accumulator 1024. In various
embodiments, the final computation result is the result of a
convolution operation. For example, the final result at Resul-
tOut 1050 is the result of convolution between a filter
received by computation unit 1000 as input values using
weight 1002 and a two-dimensional region of sensor data
received by computation unit 1000 as input values using
data 1004.

[0129] As an example, a convolution operation may be
performed using computation unit 1000 on a 2x2 data input
matrix [d0 d1; d2 d3] corresponding to a region of sensor
data and a filter corresponding to a 2x2 matrix of weights
[wO w1; w2 w3]. The 2x2 data input matrix has a first row
[dO d1] and a second row [d2 d3]. The filter matrix has a first
row [w0 wl] and a second row [w2 w3]. In various
embodiments, computation unit 1000 receives the data
matrix via data 1004 as a one-dimensional input vector [dO
d1 d2 d3] one element per clock cycle and weight matrix via
weight 1002 as a one-dimensional input vector [w0 w1 w2
w3] one element per clock cycle. Using computation unit
1000, the dot product of the two input vectors is performed
to produce a scalar result at ResultOut 1050. For example,
multiplier 1030 is used to multiply each corresponding
element of the input weight and data vectors and the results
are stored and added to previous results in accumulator
1024. For example, the result of element d0 multiplied by
element w0 (e.g., d0*wO0) is first stored in cleared accumu-
lator 1024. Next, element d1 is multiplied by element w1
and added using adder 1032 to the previous result stored in
accumulator 1024 (e.g., d0*w0) to compute the equivalent
of dO*wO0+d1*w1. Processing continues to the third pair of
elements d2 and w2 to compute the equivalent of d0*wO+
d1*wl+d2*w2 at accumulator 1024. The last pair of ele-
ments is multiplied and the final result of the dot product is
now stored in accumulator 1024 (e.g., dO*wO+d1*wl+
d2*w2+d3*w3). The dot-product result is then copied to
shadow register 1028. Once stored in shadow register 1028,
a new dot-product operation may be initiated, for example,
using a different region of sensor data. Based on ShiftEn
signal 1016, the dot-product result stored in shadow register
1028 is shifted out of shadow register 1028 to ResultOut
1050. In various embodiments, the weight and data matrices
may be different dimensions than the example above. For
example, larger dimensions may be used.

[0130] In some embodiments, a bias parameter is intro-
duced and added to the dot-product result using accumulator
1024. In some embodiments, the bias parameter is received
as input at either weight 1002 or data 1004 along with a
multiplication identity element as the other input value. The
bias parameter is multiplied against the identity element to
preserve the bias parameter and the multiplication result
(e.g., the bias parameter) is added to the dot-product result
using adder 1032. The addition result, a dot-product result
offset by a bias value, is stored in accumulator 1024 and later
shifted out at ResultOut 1050 using shadow register 1028. In

US 2019/0026250 Al

some embodiments, a bias is introduced using a vector
engine such as vector engine 111 of FIG. 1.

[0131] Although the foregoing embodiments have been
described in some detail for purposes of clarity of under-
standing, the invention is not limited to the details provided.
There are many alternative ways of implementing the inven-
tion. The disclosed embodiments are illustrative and not
restrictive.

What is claimed is:

1. A microprocessor system, comprising:

a computational array that includes a plurality of compu-

tation units; and

a vector computational unit in communication with the

computational array.

2. The system of claim 1, wherein the vector computa-
tional unit includes a plurality of processing elements, and
the processing elements are configured to receive output
data elements from the computational array and process in
parallel the received output data elements.

3. The system of claim 2, wherein the processing elements
process in parallel the received output data elements in
response to a single processor instruction.

4. The system of claim 1, wherein the computational array
includes a matrix processor.

5. The system of claim 1, wherein the computational array
is configured to receive two vector input operands.

6. The system of claim 1, wherein each computation unit
of the plurality of computation units includes an arithmetic
logic unit, an accumulator, and a shadow register.

7. The system of claim 1, wherein each computation unit
of'the plurality of computation units is configured to perform
a multiply operation and an add operation.

8. The system of claim 1, wherein each computation unit
of'the plurality of computation units is configured to perform
a dot-product component operation.

9. The system of claim 1, wherein each computation unit
of the plurality of computation units is configured to com-
pute a dot-product result component in parallel in response
to a single computational array instruction.

10. The system of claim 2, wherein each processing
element of the plurality of processing elements includes an
arithmetic logic unit configured to perform arithmetic logic
unit operations in parallel with other processing elements.

11. The system of claim 2, wherein a notification signal
identifies that output data elements from the computational
array are ready for the vector computational unit.

12. The system of claim 1, wherein the computational
array is configured to operate as a first-in-first-out queue.

13. The system of claim 2, wherein the output data
elements from the computational array correspond to dot-
product results.

14. The system of claim 2, wherein the output data
elements from the computational array correspond to con-
volution results performed on image data.

15. The system of claim 3 wherein the single processor
instruction is used to calculate a result of a non-linear
function.

Jan. 24, 2019

16. The system of claim 15, wherein the non-linear
function is a rectified linear unit function or a sigmoid
function.

17. The system of claim 1, further comprising a post-
processing unit in communication with the vector compu-
tational unit.

18. The system of claim 17, wherein the post-processing
unit is configured to perform a pooling function.

19. The system of claim 2, wherein the received output
data elements from the computational array are stored in an
accumulator.

20. The system of claim 19, wherein each processing
element of the plurality of processing elements is configured
to access a slice of the accumulator and a slice of one or
more vector registers.

21. The system of claim 2, wherein the vector computa-
tional unit further includes a plurality of vector registers
sized to fit the output data elements from the computational
array.

22. A microprocessor system, comprising:

a computational array that includes a plurality of compu-
tation units, wherein each computation unit of the
plurality of computation units is configured to perform
a dot-product component operation in response to a
single computational array instruction; and

a vector computational unit in communication with the
computational array, wherein the vector computational
unit includes a plurality of processing elements and the
processing elements are configured to receive output
data elements from the computational array and process
in parallel the received output data elements in
response to a single vector computational unit instruc-
tion.

23. The system of claim 22, further comprising:

a control unit configured to provide the single computa-
tional array instruction to the computational array and
the single vector computational unit instruction to the
vector computational unit.

24. The system of claim 23, wherein the control unit
synchronizes the output data elements transferred from the
computational array to the processing elements of the vector
computational unit.

25. The method comprising:

receiving a single processor instruction for a vector com-
putational unit, wherein the vector computational unit
is in communication with a computational array and
includes a plurality of processing elements configured
to receive output data elements from the computational
array;

receiving the output data elements from the computational
array, wherein the computational array includes a plu-
rality of computation units; and

processing in parallel the received output data elements in
response to the single processor instruction.

#* #* #* #* #*

