
US 20190026249A1

(19) United States
(12) Patent Application Publication (10) Pub . No . : US 2019 / 0026249 A1

Talpes et al . (43) Pub . Date : Jan . 24 , 2019

(54) COMPUTATIONAL ARRAY
MICROPROCESSOR SYSTEM USING
NON - CONSECUTIVE DATA FORMATTING

Publication Classification
(51) Int . Ci .

G06F 15 / 80 (2006 . 01)
(52) U . S . CI .

CPC G06F 15 / 8023 (2013 . 01) ; G06F 7 / 575
(2013 . 01)

(71) Applicant : Tesla , Inc . , Palo Alto , CA (US)
(72) Inventors : Emil Talpes , San Mateo , CA (US) ;

William McGee , San Jose , CA (US) ;
Peter Joseph Bannon , Woodside , CA
(US) (57) ABSTRACT

(21) Appl . No . : 15 / 920 , 173
(22) Filed : Mar . 13 , 2018

Related U . S . Application Data
(63) Continuation - in - part of application No . 15 / 710 , 433 ,

filed on Sep . 20 , 2017 .

(60) Provisional application No . 62 / 628 , 212 , filed on Feb .
8 , 2018 , provisional application No . 62 / 625 , 251 , filed
on Feb . 1 , 2018 , provisional application No . 62 / 536 ,
399 , filed on Jul . 24 , 2017 , provisional application
No . 62 / 536 , 399 , filed on Jul . 24 , 2017 .

A microprocessor system comprises a computational array
and a hardware data formatter . The computational array
includes a plurality of computation units that each operates
on a corresponding value addressed from memory . The
values operated by the computation units are synchronously
provided together to the computational array as a group of
values to be processed in parallel . The hardware data for
matter is configured to gather the group of values , wherein
the group of values includes a first subset of values located
consecutively in memory and a second subset of values
located consecutively in memory . The first subset of values
is not required to be located consecutively in the memory
from the second subset of values .

100
1 103 Data Input

1104
Data Formatter

-

-

• 107 -
1 .

-

.

- 1
.

-
1 .

-

ATIV Proces SO . -

- 1

-

-

I

- 1 -

- . - Weight Input Weight Formatter Control
Unit

- -

I - - - 1 - -
- : -

• - 101 - - - I - - 1 - - le -

-

-

-

•

.

.

. 1 .

. - 109

- - - - - - - - - - - - - - - 0 113
Vector Engine

m 115 Post - Processing Unit

Patent Application Publication Jan . 24 , 2019 Sheet 1 of 8 US 2019 / 0026249 A1

100
- 103 Data Input

M 104
Data Formatter

. 107
- - I - -

: : : Matrix Processor w ! * *

. . , Weight Input Weight Formatter Control
Unit

101
-

-

-

-

- - -

: 1h 109

105 106

6 113 1
111 Vector Engine

1115
Post - Processing Unit

FIG . 1

Patent Application Publication Jan . 24 , 2019 Sheet 2 of 8 US 2019 / 0026249 A1

201 Receive Input
Channels

203
Receive Filters

205 » Determine
Feature Layers

207 u Perform Activation
Function

209 Perform Pooling

FIG . 2

Patent Application Publication Jan . 24 , 2019 Sheet 3 of 8 US 2019 / 0026249 A1

301
Receive Data Input

303
Format Data Input

305 Receive Weight
Input

307
Format Weight Input

309 Perform Matrix
Processing

311 Perform Vector
Processing

3134 Perform Post
Processing

FIG . 3

400)

Resultin

Patent Application Publication

Weight NX29

awwe 432

www 434
IS

WYN

ClearAcc

410

THIS ! !

436

w 424

ARRERA

oddddddddddddddd

412 www ResultEnable
414 . ResultCapture

Loc Accum < 31 : 0 >

Jan . 24 , 2019 Sheet 4 of 8

438

ShiftEn

ShiftAcc < 31 : 0 >

Resultout

US 2019 / 0026249 A1

FIG . 4

Patent Application Publication Jan . 24 , 2019 Sheet 5 of 8 US 2019 / 0026249 A1

500

- 502
Memory

1503
Cache

504
Data Formatter

507

: Matrix Processor

Weight Formatter Control
Unit

509

506

FIG . 5

601

Memory

Patent Application Publication

6034

Cache Cache Line Cache Line

1611 14613 14615 7617
Cache Line Cache Line

Jan . 24 , 2019 Sheet 6 of 8

L

-

-

0 -
7

8 - 1516 - 2324 - 31

32 - 39

40 - 4748 - 55

56 - 63

64 - 71

72 - 79

80 - 87

88 - 95

621

622

623

624

625

626

627

628629630
631

632

Data Formatter

US 2019 / 0026249 A1

605

FIG . 6

Patent Application Publication Jan . 24 , 2019 Sheet 7 of 8 US 2019 / 0026249 A1

701 Slice Matrices , If
Applicable

703 Receive
Computational

Operation

705 Receive
Data Formatting

Operation

707 Process Data
Addresses

YES
709 ~

Data
at Addresses
Cached ?

NO

711 Read Data Into
Cache

713 Perform Matrix
Processing

715 Perform Vector
Operation (s) and / or
Post - Processing

FIG . 7

Patent Application Publication Jan . 24 , 2019 Sheet 8 of 8 US 2019 / 0026249 A1

Process First
Consecutive Subset
of Data Elements

803 Determine
Addresses for Start
and End Elements

YES
805 ~ Data Cached

or Pending ?

NO 807
YES Read Already

Issued ?

NO 811

809 YES Issue Read
to Cache Subset
of Data Elements

Additional
Subsets of Data

Elements ?

NO 813

8157 YES Perform Matrix
Processing

All Data AILD
Elements
Cached ?

NO

FINISH

FIG . 8

US 2019 / 0026249 A1 Jan . 24 , 2019

COMPUTATIONAL ARRAY
MICROPROCESSOR SYSTEM USING

NON - CONSECUTIVE DATA FORMATTING

[0004] FIG . 1 is a block diagram illustrating an embodi
ment of a microprocessor system for performing machine
learning processing .
[0005] FIG . 2 is a flow diagram illustrating an embodi
ment of a process for performing machine learning process CROSS REFERENCE TO OTHER

APPLICATIONS ing .

[0001] This application claims priority to U . S . Provisional
Patent Application No . 62 / 628 , 212 entitled A COMPUTA
TIONAL ARRAY MICROPROCESSOR SYSTEM USING
NON - CONSECUTIVE DATA FORMATTING filed Feb . 8 ,
2018 , and this application claims priority to U . S . Provisional
Patent Application No . 62 / 625 , 251 entitled VECTOR COM
PUTATIONAL UNIT filed Feb . 1 , 2018 , and this application
claims priority to U . S . Provisional Patent Application No .
62 / 536 , 399 entitled ACCELERATED MATHEMATICAL
ENGINE filed Jul . 24 , 2017 , and this application is a
continuation - in - part of co - pending U . S . patent application
Ser . No . 15 / 710 , 433 entitled ACCELERATED MATH
EMATICAL ENGINE filed Sep . 20 , 2017 , which claims
priority to U . S . Provisional Patent Application No . 62 / 536 ,
399 entitled ACCELERATED MATHEMATICAL ENGINE
filed Jul . 24 , 2017 , all of which are incorporated herein by
reference for all purposes .

[0006] FIG . 3 is a flow diagram illustrating an embodi
ment of a process for performing machine learning process
ing .
[0007] FIG . 4 is a block diagram illustrating an embodi
ment of a computation unit of a computational array .
[0008] FIG . 5 is a block diagram illustrating an embodi
ment of a cache - enabled microprocessor system for per
forming machine learning processing .
[0009] FIG . 6 is a block diagram illustrating an embodi
ment of a hardware data formatter , cache , and memory
components of a microprocessor system .
[0010 FIG . 7 is a flow diagram illustrating an embodi
ment of a process for performing machine learning process
ing
(0011] FIG . 8 is a flow diagram illustrating an embodi
ment of a process for retrieving input operands for a com
putational array .

DETAILED DESCRIPTION

BACKGROUND OF THE INVENTION
[0002] Processing for machine learning and artificial intel
ligence typically requires performing mathematical opera
tions on large sets of data and often involves solving
multiple convolution layers . Applications of machine learn
ing , such as self - driving and driver - assisted automobiles ,
often utilize array computational operations to calculate
matrix and vector results . For example , array computational
operations may be used to compute convolutional layers
such as when performing image processing on captured
sensor data . In many situations , a large amount of data is
required to perform the necessary computational operations .
Traditional implementations of these operations often
require loading each element of a computational operation
from a unique memory address . For a convolution operation ,
the process typically requires calculating an individual
memory address for each element . Moreover , there is a
potential to incur an additional delay from the latency
involved in reading each data element from memory . These
performance penalties are magnified when performing wide
convolution operations that involve large input matrices and
many matrix elements . Traditional solutions for performing
computational operations , such as relying on multiple
graphical processing unit (GPU) cores , utilize parallel pro
cessing to decrease the time spent computing . However ,
these solutions are limited in throughput in part due to the
latency incurred by reading input data from memory . There
fore , there exists a need for a microprocessor system with
increased throughput that performs array computational
operations without the need to perform computationally and
latency expensive operations for each of the individual
elements of the input data .

[0012] The invention can be implemented in numerous
ways , including as a process ; an apparatus ; a system ; a
composition of matter , a computer program product embod
ied on a computer readable storage medium ; and / or a
processor , such as a processor configured to execute instruc
tions stored on and / or provided by a memory coupled to the
processor . In this specification , these implementations , or
any other form that the invention may take , may be referred
to as techniques . In general , the order of the steps of
disclosed processes may be altered within the scope of the
invention . Unless stated otherwise , a component such as a
processor or a memory described as being configured to
perform a task may be implemented as a general component
that is temporarily configured to perform the task at a given
time or a specific component that is manufactured to per
form the task . As used herein , the term ' processor ' refers to
one or more devices , circuits , and / or processing cores con
figured to process data , such as computer program instruc
tions .
[0013] A detailed description of one or more embodiments
of the invention is provided below along with accompanying
figures that illustrate the principles of the invention . The
invention is described in connection with such embodi
ments , but the invention is not limited to any embodiment .
The scope of the invention is limited only by the claims and
the invention encompasses numerous alternatives , modifi
cations and equivalents . Numerous specific details are set
forth in the following description in order to provide a
thorough understanding of the invention . These details are
provided for the purpose of example and the invention may
be practiced according to the claims without some or all of
these specific details . For the purpose of clarity , technical
material that is known in the technical fields related to the
invention has not been described in detail so that the
invention is not unnecessarily obscured .
[0014] A microprocessor system for performing high
throughput array computational operations is disclosed . In
some embodiments , a microprocessor system includes a
computational array (e . g . , matrix processor) in communica

BRIEF DESCRIPTION OF THE DRAWINGS

[0003] Various embodiments of the invention are dis
closed in the following detailed description and the accom
panying drawings .

US 2019 / 0026249 A1 Jan . 24 , 2019

tion with a hardware data formatter for aligning the data to
minimize data reads and the latency incurred by reading
input data for processing . For example , a matrix processor
allows a plurality of elements of a matrix and / or vector to be
loaded and processed in parallel together . Thus , using data
formatted by one or more hardware data formatters , a
computational operation such as a convolution operation
may be performed by the computational array .
[0015] One technique includes loading a large number of
consecutive elements (e . g . , consecutive in memory) of a
matrix / vector together and performing operations on the
consecutive elements in parallel using the matrix processor .
By loading consecutive elements together , a single memory
load and / or cache check for the entire group of elements can
be performed allowing the entire group of elements to be
loaded using minimal processing resources . However ,
requiring the input elements of each processing iteration of
the matrix processor to be consecutive elements could
potentially require the matrix processor to load a large
number of matrix / vector elements that are to be not utilized .
For example , performing a convolution operation using a
stride greater than one requires access to matrix elements
that are not consecutive . If parallel input elements to the
matrix processor are required to be consecutive , each pro
cessing iteration of the matrix processor is unable to fully
utilize every individual input element for workloads only
requiring non - consecutive elements . An alternative tech
nique is to not require every individual input element of the
matrix processor be consecutive (e . g . , every individual input
element can be independently specified without regard to
whether it is consecutive in memory to a previous input
element) . This technique incurs significant performance
costs since each referenced element incurs the cost of
determining its memory address and performing a cache
check for the individual element with the potential of an
even more expensive load from memory in the case of a
cache miss .
[0016] . In an embodiment of a disclosed microprocessor
system , the group of input elements of a matrix processor are
divided into a plurality of subsets , wherein elements within
each subset are required be consecutive but the different
subsets are not required to be consecutive . This allows the
benefit of reduce resources required to load consecutive
elements within each subset while providing the flexibility
of loading non - consecutive elements across the different
subsets . For example , a hardware data formatter loads
multiple subsets of elements where the elements of each
subset are located consecutively in memory . By loading the
elements of each subset together , a memory address calcu
lation and cache check is performed only with respect to the
start and end elements of each subset . In the event of a cache
miss , an entire subset of elements is loaded together from
memory . Rather than incurring a memory lookup penalty on
a per element basis as with the previous discussed technique ,
a cache check is minimized to two checks for each subset
(the start and end elements) and a single memory read for the
entire subset in the event of a cache miss . Computational
operations on non - consecutive elements , such as the per
forming convolution using a stride greater than one , are
more efficient since the memory locations of the subsets
need not be consecutively located in memory . Using the
disclosed system and techniques , computational operations
may be performed on non - consecutive elements with
increased throughput and a high clock frequency .

[0017] In various embodiments , a computational array
performs matrix operations involving input vectors and
includes a plurality of computation units to receive M
operands and N operands from the input vectors . Using a
sequence of input vectors , a computational array may per
form matrix operations such as a matrix multiplication . In
some embodiments , the computation units are sub - circuits
that include an arithmetic logic unit , an accumulator , a
shadow register , and a shifter for performing operations such
as generating dot - products and various processing for con
volution . Unlike conventional graphical processing unit
(GPU) or central processing unit (CPU) processing cores ,
where each core is configured to receive its own unique
processing instruction , the computation units of the compu
tational array each perform the same computation in parallel
in response to an individual instruction received by the
computational array .
[0018] In various embodiments , the data input to the
computational array is prepared using a hardware data
formatter . For example , a hardware data formatter is utilized
to load and align data elements using subsets of elements
where the elements of each subset are located consecutively
in memory and the subsets need not be located consecutively
in memory . In various embodiments , the various subsets
may each have a memory location independent from other
subsets . For example , the different subsets may be located
non - consecutively in memory from one another . By restrict
ing the data elements within a subset to consecutive data ,
multiple consecutive data elements are processed together ,
which minimizes the calculations and delay incurred when
preparing the data for a computational array . For example , a
subset of data elements may be cached as a consecutive
sequence of data elements by performing a cache check on
the start and end element and , in the event of a cache miss
on either element , a single data read to load the entire subset
from memory into a memory cache . Once all the data
elements are available , the data may be provided together to
the computational array as a group of values to be processed
in parallel .
[0019] In some embodiments , a microprocessor system
comprises a computational array and a hardware data for
matter . For example , a microprocessor system includes a
matrix processor capable of performing matrix and vector
operations . In various embodiments , the computational
array includes a plurality of computation units . For example ,
the computation units may be sub - circuits of a matrix
processor that include the functionality for performing one
or more multiply , add , accumulate , and shift operations . As
another example , computation units may be sub - circuits that
include the functionality for performing a dot - product opera
tion . In various embodiments , the computational array
includes a sufficient number of computation units for per
forming multiple operations on the data inputs in parallel .
For example , a computational array configured to receive M
operands and N operands may include at least MXN com
putation units . In various embodiments , each of the plurality
of computation units operates on a corresponding value
formatted by a hardware data formatter and the values
operated by the plurality of computation units are synchro
nously provided together to the computational array as a
group of values to be processed in parallel . For example ,
values corresponding to elements of a matrix are processed

US 2019 / 0026249 A1 Jan . 24 , 2019

by one or more hardware data formatters and provided to the
computational array together as a group of values to be
processing in parallel .
10020] In various embodiments , a hardware data formatter
is configured to gather the group of values to be processed
in parallel by the computational array . For example , a
hardware data formatter retrieves the values from memory ,
such as static random access memory (SRAM) , via a cache .
In some embodiments , in the event of a cache miss , the
hardware data formatter loads the values into the cache from
memory and subsequently retrieves the values from the
cache . In various embodiments , the values provided to the
computational array correspond to computational operands .
For example , a hardware formatter may process M operands
as an input vector to a computational array . In various
embodiments , a second hardware formatter may process N
operands as a second input vector to the computational array .
In some embodiments , each hardware data formatter pro
cesses a group of values synchronously provided together to
the computational array , where each group of values
includes a first subset of values located consecutively in
memory and a second subset of values located consecutively
in memory , yet the first subset of values are not located
consecutively in the memory from the second subset of
values . For example , a hardware data formatter loads a first
subset of values stored consecutively in memory and a
second subset of values also stored consecutively in memory
but with a gap in memory between the two subsets of values .
Each subset of values is loaded as consecutive values into
the hardware data formatter . To prepare an entire vector of
inputs for a computational array , the hardware data formatter
performs loads based on the number of subsets instead of
based on the total number of elements needed for an input
operand to a computational array .
[0021] FIG . 1 is a block diagram illustrating an embodi
ment of a microprocessor system for performing machine
learning processing . In the example shown , microprocessor
system 100 includes control unit 101 , data input 103 , data
formatter 104 , weight input 105 , weight formatter 106 ,
matrix processor 107 , vector engine 111 , and post - process
ing unit 115 . Data input 103 and weight input 105 are input
data that is fed to hardware data formatters data formatter
104 and weight formatter 106 . In some embodiments , data
input 103 and / or weight input 105 are retrieved from a
memory (not shown) , which may include a memory cache or
buffer to reduce latency when reading data . In the example
shown , data formatter 104 and weight formatter 106 are
hardware data formatters for preparing data for matrix
processor 107 . In some embodiments , data formatter 104
and weight formatter 106 include a logic circuit for prepar
ing data for matrix processor 107 and / or a memory cache or
buffer for storing and processing input data . For example ,
data formatter 104 may prepare N operands from a two
dimensional array retrieved from data input 103 that corre
spond to image data . Weight formatter 106 may prepare M
operands retrieved from weight input 105 that correspond to
a vector of weight values . Data formatter 104 and weight
formatter 106 prepare the N and M operands to be processed
by matrix processor 107 . In some embodiments , micropro
cessor system 100 , including at least hardware data format
ters data formatter 104 and weight formatter 106 , matrix
processor 107 , vector engine 111 , and post - processing unit
115 , perform the processes described below with respect to
FIGS . 2 , 3 , 7 , and 8 .

[0022] In some embodiments , matrix processor 107 is a
computational array that includes a plurality of computation
units . For example , a matrix processor receiving M operands
and N operands from weight formatter 106 and data for
matter 104 , respectively , includes MxN computation units .
In the figure shown , the small squares inside matrix proces
sor 107 depict that matrix processor 107 includes a logical
two - dimensional array of computation units . Computation
unit 109 is one of a plurality of computation units of matrix
processor 107 . In some embodiments , each computation unit
is configured to receive one operand from data formatter 104
and one operand from weight formatter 106 . In some
embodiments , the computation units are configured accord
ing to a logical two - dimensional array but the matrix pro
cessor is not necessarily fabricated with computation units
laid out as a physical two - dimensional array . For example ,
the i - th operand of data formatter 104 and the j - th operand
of weight formatter 106 are configured to be processed by
the i - thxj - th computation unit of matrix processor 107 .
[0023] In various embodiments , the data width of compo
nents data formatter 104 , weight formatter 106 , matrix
processor 107 , vector engine 111 , and post - processing unit
115 are wide data widths and include the ability to transfer
more than one operand in parallel . In some embodiments ,
data formatter 104 and weight formatter 106 are each
96 - bytes wide . In some embodiments , data formatter 104 is
192 - bytes wide and weight formatter 106 is 96 - bytes wide .
In various embodiments , the width of data formatter 104 and
weight formatter 106 is dynamically configurable . For
example , data formatter 104 may be dynamically configured
to 96 or 192 bytes and weight formatter 106 may be
dynamically configured to 96 or 48 bytes . In some embodi
ments , the dynamic configuration is controlled by control
unit 101 . In various embodiments , a data width of 96 bytes
allows 96 operands to be processed in parallel . For example ,
in an embodiment with data formatter 104 configured to be
96 - bytes wide , data formatter 104 can transfer 96 operands
to matrix processor 107 in parallel .
[0024] In various embodiments , data input 103 and weight
input 105 are input data to corresponding hardware data
formatters data formatter 104 and weight formatter 106
based on memory addresses calculated by the hardware data
formatters . In some embodiments , data formatter 104 and / or
weight formatter 106 retrieves via data input 103 and weight
input 105 , respectively , a stream of data corresponding to
one or more subsets of values stored consecutively in
memory . Data formatter 104 and / or weight formatter 106
may retrieve one or more subsets of values stored consecu
tively in memory and prepare the data as input values for
matrix processor 107 . In various embodiments , the one or
more subsets of values are not themselves stored consecu
tively in memory with other subsets of values . In some
embodiments , data input 103 and / or weight input 105 are
retrieved from memory (not shown in FIG . 1) that contains
a single read port . In some embodiments , the memory
contains a limited number of read ports and the number of
read ports is fewer than the data width of components data
formatter 104 , weight formatter 106 , matrix processor 107 ,
vector engine 111 , and / or post - processing unit 115 . In some
embodiments , the memory includes a cache and a hardware
data formatter , such as data formatter 104 and weight
formatter 106 , which will perform a cache check to deter
mine whether each subset of values is in the cache prior to
issuing a read request to memory . In the event the subset of

US 2019 / 0026249 A1 Jan . 24 , 2019

values is cached , a hardware data formatter (e . g . , data
formatter 104 or weight formatter 106) will retrieve the data
from the cache . In various embodiments , in the event of a
cache miss , the hardware data formatter (e . g . , data formatter
104 or weight formatter 106) will retrieve the entire subset
of values from memory and populate the cache with the
retrieved values .
[0025] In various embodiments , matrix processor 107 is
configured to receive N bytes from data formatter 104 and
M bytes from weight formatter 106 and includes at least
MxN computation units . For example , matrix processor 107
may be configured to receive 96 bytes from data formatter
104 and 96 bytes from weight formatter 106 and includes at
least 96x96 computation units . As another example , matrix
processor 107 may be configured to receive 192 bytes from
data formatter 104 and 48 bytes from weight formatter 106
and includes at least 192x48 computation units . In various
embodiments , the dimensions of matrix processor 107 may
be dynamically configured . For example , the default dimen
sions of matrix processor 107 may be configured to receive
96 bytes from data formatter 104 and 96 bytes from weight
formatter 106 but the input dimensions may be dynamically
configured to 192 bytes and 48 bytes , respectively . In
various embodiments , the output size of each computation
unit is equal to or larger than the input size . For example , in
some embodiments , the input to each computation unit is
two 1 - byte operands , one corresponding to an operand from
data formatter 104 and one from weight formatter 106 , and
the output of processing the two operands is a 4 - byte result .
As another example , matrix processor 107 may be config
ured to receive 96 bytes from data formatter 104 and 96
bytes from weight formatter 106 and output 96 4 - byte
results . In some embodiments , the output of matrix proces
sor 107 is a vector . For example , a matrix processor con
figured to receive two 96 - wide input vectors , where each
element (or operand) of the input vector is one byte in size ,
can output a 96 - wide vector result where each element of the
vector result is 4 - bytes in size .
[0026] . In various embodiments , each computation unit of
matrix processor 107 is a sub - circuit that includes an arith
metic logic unit , an accumulator , and a shadow register . In
the example shown , the computation units of matrix pro
cessor 107 can perform an arithmetic operation on the M
operands and N operands from weight formatter 106 and
data formatter 104 , respectively . In various embodiments ,
each computation unit is configured to perform one or more
multiply , add , accumulate , and / or shift operations . In some
embodiments , each computation unit is configured to per
form a dot - product operation . For example , in some embodi
ments , a computation unit may perform multiple dot - product
component operations to calculate a dot - product result . For
example , the array of computation units of matrix processor
107 may be utilized to perform convolution steps required
for performing inference using a machine learning model . A
two - dimensional data set , such as an image , may be format
ted and fed into matrix processor 107 using data formatter
104 and data input 103 , one vector at a time . In parallel , a
filter of weights may be applied to the two - dimensional data
set by formatting the weights and feeding them as a vector
into matrix processor 107 using weight formatter 106 and
weight input 105 . Corresponding computation units of
matrix processor 107 perform a matrix processor instruction
on the corresponding operands of the weight and data inputs
in parallel .

[0027] In some embodiments , vector engine 111 is a
vector computational unit that is communicatively coupled
to matrix processor 107 . Vector engine 111 includes a
plurality of processing elements including processing ele
ment 113 . In the figure shown , the small squares inside
vector engine 111 depict that vector engine 111 includes a
plurality of processing elements arranged as a vector . In
some embodiments , the processing elements are arranged in
a vector in the same direction as data formatter 104 . In some
embodiments , the processing elements are arranged in a
vector in the same direction as weight formatter 106 . In
various embodiments , the data size of the processing ele
ments of vector engine 111 is the same size or larger than the
data size of the computation units of matrix processor 107 .
For example , in some embodiments , computation unit 109
receives two operands each 1 byte in size and outputs a
result 4 bytes in size . Processing element 113 receives the
4 - byte result from computation unit 109 as an input 4 bytes
in size . In various embodiments , the output of vector engine
111 is the same size as the input to vector engine 111 . In
some embodiments , the output of vector engine 111 is
smaller in size compared to the input to vector engine 111 .
For example , vector engine 111 may receive up to 96
elements each 4 bytes in size and output 96 elements each
1 byte in size . As described above , in some embodiments ,
the communication channel from data formatter 104 and
weight formatter 106 to matrix processor 107 is 96 - elements
wide with each element 1 byte in size and matches the output
size of vector engine 111 (96 - elements wide with each
element 1 byte in size) .
[0028] In some embodiments , the processing elements of
vector engine 111 , including processing element 113 , each
include an arithmetic logic unit (ALU) (not shown) . For
example , in some embodiments , the ALU of each processing
element is capable of performing arithmetic operations . In
some embodiments , each ALU of the processing elements is
capable of performing in parallel a rectified linear unit
(ReLU) function and / or scaling functions . In some embodi
ments , each ALU is capable of performing a non - linear
function including non - linear activation functions . In vari
ous embodiments , each processing element of vector engine
111 includes one or more flip - flops for receiving input
operands . In some embodiments , each processing element
has access to a slice of a vector engine accumulator and / or
vector registers of vector engine 111 . For example , a vector
engine capable of receiving 96 - elements includes a 96 - ele
ment wide accumulator and one or more 96 - element vector
registers . Each processing element has access to a one
element slice of the accumulator and / or vector registers . In
some embodiments , each element is 4 - bytes in size . In
various embodiments , the accumulator and / or vector regis
ters are sized to fit at least the size of an input data vector .
In some embodiments , vector engine 111 includes additional
vector registers sized to fit the output of vector engine 111 .
[0029] In some embodiments , the processing elements of
vector engine 111 are configured to receive data from matrix
processor 107 and each of the processing elements can
process the received portion of data in parallel . As one
example of a processing element , processing element 113 of
vector engine 111 receives data from computation unit 109
of matrix processor 107 . In various embodiments , vector
engine 111 receives a single vector processor instruction and
in turn each of the processing elements performs the pro
cessor instruction in parallel with the other processing

US 2019 / 0026249 A1 Jan . 24 , 2019

elements . In some embodiments , the processor instruction
includes one or more component instructions , such as a load ,
a store , and / or an arithmetic logic unit operation . In various
embodiments , a no - op operation may be used to replace a
component instruction .
[0030] In the example shown , the dotted arrows between
data formatter 104 and matrix processor 107 , weight for
matter 106 and matrix processor 107 , matrix processor 107
and vector engine 111 , and vector engine 111 and post
processing unit 115 depict couplings between the respective
pairs of components that are capable of sending multiple
data elements such as a vector of data elements . As an
example , the communication channel between matrix pro
cessor 107 and vector engine 111 may be 96x32 bits wide
and support transferring 96 elements in parallel where each
element is 32 bits in size . As another example , the commu
nication channel between vector engine 111 and post - pro
cessing unit 115 may be 96x1 byte wide and support
transferring 96 elements in parallel where each element is 1
byte in size . In various embodiments , data input 103 and
weight input 105 are retrieved from a memory module (not
shown in FIG . 1) . In some embodiments , vector engine 111
is additionally coupled to a memory module (not shown in
FIG . 1) and may receive input data from the memory module
in addition or alternatively to input from matrix processor
107 . In the various embodiments , a memory module is
typically a static random access memory (SRAM) .
[0031] In some embodiments , one or more computation
units of matrix processor 107 may be grouped together into
a lane such that matrix processor 107 has multiple lanes . In
various embodiments , the lanes of matrix processor 107 may
be aligned with either data formatter 104 or weight formatter
106 . For example , a lane aligned with weight formatter 106
includes a set of computation units that are configured to
receive as input every operand of weight formatter 106 .
Similarly , a lane aligned with data formatter 104 includes a
set of computation units that are configured to receive as
input every operand of data formatter 104 . In the example
shown in FIG . 1 , the lanes are aligned along weight format
ter 106 in a vertical column and each lane feeds to a
corresponding lane of vector engine 111 . In some embodi
ments , each lane is a vertical column of sub - circuits that
include multiply , add and / or accumulate , and shift function
ality . In some embodiments , matrix processor 107 includes
a matrix of tiles and each tile is a matrix of computation
units . For example , a 96x96 matrix processor may include a
matrix of 6x6 tiles , where each tile includes 16x16 compu
tation units . In some embodiments , a vertical lane is a single
column of tiles . In some embodiments , a horizontal lane is
a single row of tiles . In various embodiments , the dimen
sions of the lane may be configured dynamically and may be
utilized for performing alignment operations on the input to
matrix processor 107 , vector engine 111 , and / or post - pro
cessing unit 115 . In some embodiments , the dynamic con
figuration is performed by or using control unit 101 and / or
with using processor instructions and / or control signals
controlled by control unit 101 .
[0032] In some embodiments , control unit 101 synchro
nizes the processing performed by data formatter 104 ,
weight formatter 106 , matrix processor 107 , vector engine
111 , and post - processing unit 115 . For example , control unit
101 may send processor specific control signals and / or
instructions to each of data formatter 104 , weight formatter
106 , matrix processor 107 , vector engine 111 , and post

processing unit 115 . In some embodiments , a control signal
is utilized instead of a processor instruction . Control unit
101 may send matrix processor instructions to matrix pro
cessor 107 . A matrix processor instruction may be a com
putational array instruction that instructs a computational
array to perform an arithmetic operation , such as a dot
product or dot - product component , using specified operands
from data input 103 and / or weight input 105 that are
formatted by data formatter 104 and / or weight formatter
106 , respectively . Control unit 101 may send vector proces
sor instructions to vector engine 111 . For example , a vector
processor instruction may include a single processor instruc
tion with a plurality of component instructions to be
executed together by the vector computational unit . Control
unit 101 may send post - processing instructions to post
processing unit 115 . In various embodiments , control unit
101 synchronizes data that is fed to matrix processor 107
from data formatter 104 and weight formatter 106 , to vector
engine 111 from matrix processor 107 , and to post - process
ing unit 115 from vector engine 111 . In some embodiments ,
control unit 101 synchronizes the data between different
components of microprocessor system 100 including
between data formatter 104 , weight formatter 106 , matrix
processor 107 , vector engine 111 , and / or post - processing
unit 115 by utilizing processor specific memory , queue ,
and / or dequeue operations and / or control signals . In some
embodiments , data and instruction synchronization is per
formed by control unit 101 . In some embodiments , data and
instruction synchronization is performed by control unit 101
that includes one or more sequencers to synchronize pro
cessing between data formatter 104 , weight formatter 106 ,
matrix processor 107 , vector engine 111 , and / or post - pro
cessing unit 115 .
[0033] In some embodiments , data input 103 , data format
ter 104 , weight input 105 , weight formatter 106 , matrix
processor 107 , and vector engine 111 are utilized for pro
cessing convolution layers . For example , matrix processor
107 may be used to perform calculations associated with one
or more convolution layers of a convolution neural network .
Data formatter 104 and weight formatter 106 may be utilized
to prepare matrix and / or vector data in a format for process
ing by matrix processor 107 . Data input 103 may include
image data such as one or more image channels captured by
sensors (not shown) , where sensors include , as an example ,
cameras mounted to a vehicle . Weight input 105 may include
weights determined by training a machine learning model
for autonomous driving . In some embodiments , vector
engine 111 is utilized for performing non - linear functions
such as an activation function on the output of matrix
processor 107 . For example , matrix processor 107 may be
used to calculate a dot - product and vector engine 111 may be
used to perform an activation function such as a rectified
linear unit (ReLU) or sigmoid function . In some embodi
ments , post - processing unit 115 is utilized for performing
pooling operations . In some embodiments , post - processing
unit 115 is utilized for formatting and storing the processed
data to memory and may be utilized for synchronizing
memory writing latency .
[0034] FIG . 2 is a flow diagram illustrating an embodi
ment of a process for performing machine learning process
ing . In some embodiments , the process of FIG . 2 is utilized
to implement a convolutional neural network using sensor
input data such as images and learned weights . In various
embodiments , the process of FIG . 2 may be repeated for

US 2019 / 0026249 A1 Jan . 24 , 2019

multiple convolution layers by using the output of the
process of FIG . 2 as the input for the next convolution layer .
In some embodiments , the processing is performed in the
context of self - driving or driver - assisted vehicles to identify
objects in a scene such as street signs , vehicles , pedestrians ,
and lane markers , among other objects . Other sensor data ,
including non - image sensor data , such as ultrasonic , radar ,
and LiDAR , may also be utilized as input data . In various
embodiments , the process of FIG . 2 utilizes a microproces
sor system such as is microprocessor system 100 of FIG . 1 .
[0035] At 201 , input channels are received as input data to
the microprocessor system . For example , vision data is
captured using sensors and may include one or more chan
nels corresponding to different color channels for the colors
red , green , and blue . In various embodiments , multiple
channels may be utilized as the different channels may
contain different forms of information . As another example ,
non - sensor data may be utilized as input data . In various
embodiments , the input channels may be loaded from
memory via a cache using subsets of consecutively stored
data in memory . In some embodiments , the input channels
may be retrieved and / or formatted for processing using a
hardware data formatter such as data formatter 104 of FIG .

[00361 . At 203 , one or more filters are received for pro
cessing the input channels . For example , a filter in the form
of a matrix contains learned weights and is used to identify
activations in the channels . In some embodiments , the filter
is a square matrix kernel smaller than the input channel . In
various embodiments , filters may be utilized to identify
particular shapes , edges , lines , and other features and / or
activations in the input data . In some embodiments , the
filters and associated weights that make up the filter are
created by training a machine learning model using a
training corpus of data similar to the input data . In various
embodiments , the received filters may be streamed from
memory . In some embodiments , the filters may be retrieved
and / or formatted for processing using a hardware data
formatter such as weight formatter 106 of FIG . 1 .
[0037] At 205 , one or more feature layers are determined
using the received input channels and filters . In various
embodiments , the feature layers are determined by perform
ing one or more convolution operations using a computa
tional array such as matrix processor 107 of FIG . 1 . In some
embodiments , the one or more output feature layers are
determined by repeatedly performing a dot - product between
different small regions of an input channel and the weights
of the filter . In various embodiments , each filter is used to
create a single feature layer by performing a two - dimen
sional convolution using the filter . In some embodiments ,
the input data is padded to adjust for the size of the output
feature layer . In various embodiments , a stride parameter is
utilized and may impact the size of the output feature layer .
In various embodiments , a bias parameter may be utilized .
For example , a bias term may be added to the resulting
values of convolution for each element of a feature layer .
[0038] At 207 , an activation function is performed on one
or more feature layers . For example , an element - wise acti
vation function , such as a rectified linear unit (ReLU) .
function , is performed using a vector processor such as
vector engine 111 of FIG . 1 to create an activation layer . In
various embodiments , different activation functions , such as

a non - linear activation function , including ReLU and sig
moid , may be utilized to create an activation layer for each
feature layer .
00391 . At 209 , pooling is performed on the activation
layers created at 207 . For example , a pooling layer is
generated by a post - processing unit such as post - processing
unit 115 of FIG . 1 using the activation layer generated at
207 . In some embodiments , the pooling layer is generated to
down sample the activation layer . In various embodiments ,
different filter sizes may be utilized to create a pooling layer
based on the desired output size . In various embodiments ,
different pooling techniques , such as maxpooling , are uti
lized . In various embodiments , pooling parameters include
kernel size , stride , and / or spatial extent , among others . In
some embodiments , the pooling layer is an optional layer
and may be implemented when appropriate .
0040) In various embodiments , the process of FIG . 2 is
utilized for each layer of a convolution neural network
(CNN) . Multiple passes of the process of FIG . 2 may be
utilized to implement a multi - layer CNN . For example , the
output of 209 may be utilized as input channels at 201 to
calculate output layers of an intermediate layer . In some
embodiments , a CNN is connected to one or more additional
non - CNN layers for classification , object detection , object
segmentation , and / or other appropriate goals . In some
embodiments , the additional non - CNN layers are imple
mented using a microprocessor system such as is micropro
cessor system 100 of FIG . 1 .
[0041] FIG . 3 is a flow diagram illustrating an embodi
ment of a process for performing machine learning process
ing . In some embodiments , the process of FIG . 3 is utilized
to perform inference on sensor data by performing compu
tational operations , such as convolution operations , and
element - wise activation functions . In some embodiments ,
the process of FIG . 3 is performed using a microprocessor
system such as is microprocessor system 100 of FIG . 1 . In
various embodiments , steps 301 and 303 are performed at
201 of FIG . 2 using data input 103 and data formatter 104
of FIG . 1 , steps 305 and 307 are performed at 203 of FIG .
2 using weight input 105 and weight formatter 106 of FIG .
1 , step 309 is performed at 205 of FIG . 2 using matrix
processor 107 of FIG . 1 , step 311 is performed at 207 of FIG .
2 using vector engine 111 of FIG . 1 , and step 313 is
performed at 209 of FIG . 2 using post - processing unit 115
of FIG . 1 .
[0042] At 301 , data input is received . For example , data
input corresponding to sensor data is received by a hardware
data formatter for formatting . In some embodiments , data
input is data input 103 of FIG . 1 and is received by data
formatter 104 of FIG . 1 . In various embodiments , a hard
ware data formatter requests the data input from memory as
read requests based on subsets of values stored consecu
tively in memory . For example , a hardware data formatter
may first check a cache of the memory for the requested data
values and in the event of a cache miss , the read request will
retrieve the data values from memory . In various embodi
ments , checking for a cache hit or miss requires calculating
the start address and end address of the subset of requested
data values . In some embodiments , a data request populates
the cache with the requested values along with additional
data to fill a cache line . In some embodiments , the data is
streamed in from memory and may bypass the cache .
[0043] At 303 , data input is formatted using a hardware
data formatter . For example , a hardware data formatter such

US 2019 / 0026249 A1 Jan . 24 , 2019

as data formatter 104 of FIG . 1 formats the received data
input for processing by a computational array such as matrix
processor 107 of FIG . 1 . The hardware data formatter may
format the received data input into an input vector of
operands for a computational array . In some embodiments ,
the hardware data formatter further performed the requesting
of data received at 301 . In some embodiments , the hardware
data formatter will format at least one of the operands of a
convolution operation . For example , each two - dimensional
region corresponding to an input channel of vision data for
a convolution operation involving a filter will be formatted
by the hardware data formatter into a vector operand for the
computational array . The vectors corresponding to the
regions are grouped together by their n - th elements and fed
to the computation array at a rate of at most one element
from each vector per clock cycle . In some embodiments , the
hardware data formatter will select the appropriate elements
for performing convolution of a filter with the data input by
formatting each region of the data input into a vector and
feeding each element of the appropriate vector to a corre
sponding computation unit of a computational array . In some
embodiments , a bias parameter is introduced using the
hardware data formatter .
[0044] At 305 , weight input is received . For example ,
weight input corresponding to machine learning weights of
a filter are received by a hardware data formatter for
formatting . In some embodiments , weight input is weight
input 105 of FIG . 1 and is received by weight formatter 106
of FIG . 1 . In various embodiments , a hardware data format
ter requests the weight input from memory as read requests
based on subsets of values stored consecutively in memory .
For example , a hardware data formatter may first check a
cache of the memory for the requested weight values and in
the event of a cache miss , the read request will retrieve the
weight values from memory . In various embodiments ,
checking for a cache hit or miss requires calculating the start
address and end address of the subset of requested weight
values . In some embodiments , a weight data request popu
lates the cache with the requested weight values . In some
embodiments , the data for weights is streamed in from
memory and may bypass the cache . In some embodiments ,
the weight input includes a bias parameter .
[0045] At 307 , weight input is formatted using a hardware
data formatter . For example , a hardware data formatter such
as weight formatter 106 of FIG . 1 formats the received
weight input for processing by a computational array such as
matrix processor 107 of FIG . 1 . The hardware data formatter
may format the received weight input into an input vector of
operands for a computational array . In some embodiments ,
the hardware data formatter further performed the requesting
of data received at 305 . In some embodiments , the hardware
data formatter will format at least one of the operands of a
convolution operation . For example , a filter for a convolu
tion operation will be formatted by the hardware data
formatter into a vector operand for the computational array .
In some embodiments , the hardware data formatter will
select the appropriate elements for performing convolution
of a filter with the data input by formatting the filter into a
vector and feeding each element of the vector to a corre
sponding computation unit of a computational array . In some
embodiments , a bias parameter is introduced using the
hardware data formatter .
[0046] At 309 , matrix processing is performed . For
example , the operands formatted at 303 and 307 are received

by each of the computation units of a computational array
for processing . In some embodiments , the matrix processing
is performed using a matrix processor such as matrix pro
cessor 107 of FIG . 1 . In some embodiments , a dot - product
is performed at each appropriate computation unit of the
computational array using respective vectors received by
hardware data formatters such as data formatter 104 and
weight formatter 106 of FIG . 1 . In some embodiments , only
a subset of the matrix processor ' s computation units is
utilized . For example , a computational array with 96x96
computation units may utilize only 64x64 computation units
in the event the data input is 64 vectors and the weight input
is 64 vectors . In various embodiments , the number of
computation units utilized is based on the size on the data
input and / or weight input . In some embodiments , the com
putation units each perform one or more of multiply , add ,
accumulate , and / or shift operations . In some embodiments ,
the computation units each perform one or more of multiply ,
add , accumulate , and / or shift operations each clock cycle . In
some embodiments , a bias parameter is received and added
to the calculated dot - product as part of the matrix processing
performed .
[0047] At 311 , vector processing is performed . For
example , an element - wise activation function may be per
formed on the result of the matrix processing performed at
309 . In some embodiments , an activation function is a
non - linear activation function such as a rectified linear unit
(ReLU) , sigmoid , or other appropriate function . In some
embodiments , the vector processor is utilized to implement
scaling , normalization , or other appropriate techniques . For
example , a bias parameter may be introduced to the result of
a dot - product using the vector processor . In some embodi
ments , the result of 311 is a series of activation maps or
activation layers . In some embodiments , vector processing is
performed using a vector engine such as vector engine 111
of FIG . 1 .
[0048] At 313 , post - processing is performed . For example ,
a pooling layer may be implemented using a post - processing
processor such as post - processing unit 115 of FIG . 1 . In
various embodiments , different post - processing techniques ,
including different pooling techniques such as maxpooling ,
may be implemented during the post - processing stage of
313 .
[0049] In various embodiments , the process of FIG . 3 is
utilized for each layer of a convolution neural network
(CNN) . Multiple passes of the process of FIG . 3 may be
utilized to implement a multi - layer CNN . For example , the
output of 313 may be utilized as data input for step 301 . In
some embodiments , the process of FIG . 3 must be repeated
one or more times to complete a single layer . For example ,
in the scenario where the sensor data is larger in dimension
than the number of computation units of the computational
array , the sensor data may be sliced into smaller regions that
fit the computational array and the process of FIG . 3 is
repeated on each of the sliced regions .
[0050] FIG . 4 is a block diagram illustrating an embodi
ment of a computation unit of a computational array . In the
example shown , computation unit 400 includes input values
weight 402 , data 404 , and ResultIn 406 ; signals ClearAcc
signal 408 , Clock signal 410 , ResultEnable signal 412 ,
ResultCapture signal 414 , and ShiftEn signal 416 ; compo
nents accumulator 424 , multiplexer 426 , shadow register
428 , multiplier 430 , and adder 432 ; logic 434 , 436 , and 438 ;
and output value ResultOut 450 . In some embodiments ,

US 2019 / 0026249 A1 Jan . 24 , 2019

logic 434 , 436 , and 438 are AND gates . In some embodi
ments , additional signals are included as appropriate . In
various embodiments , the computation unit of FIG . 4 is
repeated for each of the plurality of computation units , such
as computation unit 109 , of a computation array such as
matrix processor 107 of FIG . 1 . Computation unit 400 may
be utilized to implement computational operations in paral
lel . In various embodiments , each computation unit of a
computational array performs computations in parallel with
the other computation units . In various embodiments , com
putation unit 400 is a sub - circuit of a matrix processor that
includes the functionality for performing one or more mul
tiply , add , accumulate , and / or shift operations . For example ,
computation unit 400 may be a sub - circuit that includes the
functionality for performing a dot - product operation .
10051] In some embodiments , Clock signal 410 is a clock
signal received by computation unit 400 . In various embodi
ments , each computation unit of the computational array
receives the same clock signal and the clock signal is utilized
to synchronize the processing of each computation unit with
the other computation units .
[0052] In the example shown , multiplier 430 receives and
performs a multiplication operation on the input values data
404 and weight 402 . The output of multiplier 430 is fed to
adder 432 . Adder 432 receives and performs an addition on
the output of multiplier 430 and the output of logic 434 . The
output of adder 432 is fed to accumulator 424 . In some
embodiments , input values data 404 and weight 402 are lines
that cross computation units and feed the corresponding data
and / or weight to neighboring computation units . For
example , in some embodiments , data 404 is fed to all
computation units in the same column and weight 402 is fed
to all computation units in the same row . In various embodi
ments , data 404 and weight 402 correspond to input ele
ments fed to computation unit 400 from a data hardware data
formatter and a weight hardware data formatter , respec
tively . In some embodiments , the data hardware data for
matter and the weight hardware data formatter are data
formatter 104 and weight formatter 106 of FIG . 1 , respec
tively .
[0053] In some embodiments , ClearAcc signal 408 clears
the contents of accumulator 424 . As an example , accumu
lation operations can be reset by clearing accumulator 424
and used to accumulate the result of multiplier 430 . In some
embodiments , ClearAcc signal 408 is used to clear accumu
lator 424 for performing a new dot - product operation . For
example , elements - wise multiplications are performed by
multiplier 430 and the partial - dot - product results are added
using adder 432 and accumulator 424 .
[0054] In various embodiments , accumulator 424 is an
accumulator capable of accumulating the result of adder 432
and indirectly the result of multiplier 430 . For example , in
some embodiments , accumulator 424 is configured to accu
mulate the result of multiplier 430 with the contents of
accumulator 424 based on the status of ClearAcc signal 408 .
As another example , based on the status of ClearAcc signal
408 , the current result stored in accumulator 424 may be
ignored by adder 432 . In the example shown , accumulator
424 is a 32 - bit wide accumulator . In various embodiments ,
accumulator 424 may be sized differently , e . g . , 8 - bits ,
16 - bits , 64 - bits , etc . , as appropriate . In various embodi
ments , each accumulator of the plurality of computation
units of a computational array is the same size . In various
embodiments , accumulator 424 may accumulate and save

data , accumulate and clear data , or just clear data . In some
embodiments , accumulator 424 may be implemented as an
accumulation register . In some embodiments , accumulator
424 may include a set of arithmetic logic units (ALUS) that
include registers .
[0055] In some embodiments , ResultEnable signal 412 is
activated in response to a determination that data 404 is
valid . For example , ResultEnable signal 412 may be enabled
to enable processing by a computation unit such as process
ing by multiplier 430 and adder 432 into accumulator 424 .
[0056] In some embodiments , ResultCapture signal 414 is
utilized to determine the functionality of multiplexer 426 .
Multiplexer 426 receives as input ResultIn 406 , output of
accumulator 424 , and ResultCapture signal 414 . In various
embodiments , ResultCapture signal 414 is used to enable
either ResultIn 406 or the output of accumulator 424 to pass
through as the output of multiplexer 426 . In some embodi
ments , multiplexer 426 is implemented as an output register .
In some embodiments , ResultIn 406 is connected to a
computation unit in the same column as computation unit
400 . For example , the output of a neighboring computation
unit is fed in as an input value ResultIn 406 to computation
unit 400 . In some embodiments , the input of a neighboring
computation unit is the computation unit ' s corresponding
ResultOut value .
10057] In some embodiments , shadow register 428
receives as input the output of multiplexer 426 . In some
embodiments , shadow register 428 is configured to receive
the output of accumulator 424 via multiplexer 426 depend
ing on the value of ResultCapture signal 414 . In the example
shown , the output of shadow register 428 is output value
ResultOut 450 . In various embodiments , once a result is
inserted into shadow register 428 , accumulator 424 may be
used to commence new calculations . For example , once the
final dot - product result is stored in shadow register 428 ,
accumulator 424 may be cleared and used to accumulate and
store the partial result and eventually the final result of a new
dot - product operation on new weight and data input values .
In the example shown , shadow register 428 receives a signal
ShiftEn signal 416 . In various embodiments , ShiftEn signal
416 is used to enable or disable the storing of values in the
shadow register 428 . In some embodiments , ShiftEn signal
416 is used to shift the value stored in shadow register 428
to output value ResultOut 450 . For example , when ShiftEn
signal 416 is enabled , the value stored in shadow register
428 is shifted out of shadow register 428 as output value
ResultOut 450 . In some embodiments , ResultOut 450 is
connected to a neighboring computation unit ' s input value
Resultin . In some embodiments , the last cell of a column of
computation units is connected to the output of the compu
tational array . In various embodiments , the output of the
computational array feeds into a vector engine such as
vector engine 111 of FIG . 1 for vector processing . For
example , the output ResultOut 450 of a computation cell
such as computation cell 109 of FIG . 1 may be fed into a
processing element of a vector engine such as processing
element 113 of vector engine 111 of FIG . 1 .
[0058] In the example shown , shadow register 428 is
32 - bits wide . In various embodiments , shadow register 428
may be sized differently , e . g . , 8 - bits , 16 - bits , 64 - bits , etc . , as
appropriate . In various embodiments , each shadow register
of the plurality of computation units of a computational
array is the same size . In various embodiments , shadow
register 428 is the same size as accumulator 424 . In various

US 2019 / 0026249 A1 Jan . 24 , 2019

embodiments , the size of multiplexer 426 is based on the
size of accumulator 424 and / or shadow register 428 (e . g . , the
same size or larger) .
[0059] In some embodiments , logic 434 , 436 , and 438
receive signals , such as control signals , to enable and / or
configure the functionality of computation unit 400 . In
various embodiments , logic 434 , 436 , and 438 are imple
mented using AND gates and / or functionality corresponding
to an AND gate . For example , as described above , logic 434
receives ClearAcc signal 408 and an input value correspond
ing to the value stored in accumulator 424 . Based on
ClearAcc signal 408 , the output of logic 434 is determined
and fed to adder 432 . As another example , logic 436 receives
ResultEnable signal 412 and Clock signal 410 . Based on
ResultEnable signal 412 , the output of logic 436 is deter
mined and fed to accumulator 424 . As another example ,
logic 438 receives ShiftEn signal 416 and Clock signal 410 .
Based on ShiftEn signal 416 , the output of logic 438 is
determined and fed to shadow register 428 .
[0060] In various embodiments , computation units may
perform a multiplication , an addition operation , and a shift
operation at the same time , i . e . , within a single cycle ,
thereby doubling the total number of operations that occur
each cycle . In some embodiments , results are moved from
multiplexer 426 to shadow register 428 in a single clock
cycle , i . e . , without the need of intermediate execute and save
operations . In various embodiments , the clock cycle is based
on the signal received at Clock signal 410 .
[0061] In various embodiments , input values weight 402
and data 404 are 8 - bit values . In some embodiments , weight
402 is a signed value and data 404 is unsigned . In various
embodiments , weight 402 and data 404 may be signed or
unsigned , as appropriate . In some embodiments , Resultin
406 and ResultOut 450 are 32 - bit values . In various embodi
ments ResultIn 406 and ResultOut 450 are implemented
using a larger number of bits than input operands weight 402
and data 404 . By utilizing a large number of bits , the results
of multiplying multiple pairs of weight 402 and data 404 , for
example , to calculate a dot - product result , may be accumu
lated without overflowing the scalar result .
[0062] In some embodiments , computation unit 400 gen
erates an intermediate and / or final computation result in
accumulator 424 . The final computation result is then stored
in shadow register 428 via multiplexer 426 . In some embodi
ments , multiplexer 426 functions as an output register and
store the output of accumulator 424 . In various embodi
ments , the final computation result is the result of a convo
lution operation . For example , the final result at ResultOut
450 is the result of convolution between a filter received by
computation unit 400 as input values using weight 402 and
a two - dimensional region of sensor data received by com
putation unit 400 as input values using data 404 .
[0063] As an example , a convolution operation may be
performed using computation unit 400 on a 2x2 data input
matrix [do dl ; d2 d3] corresponding to a region of sensor
data and a filter corresponding to a 2x2 matrix of weights
Wo wl ; w2 w3) . The 2x2 data input matrix has a first row
[do d1] and a second row [d2 d3] . The filter matrix has a first
row [w0 wl] and a second row [W2 w3] . In various
embodiments , computation unit 400 receives the data matrix
via data 404 as a one - dimensional input vector [do di d2 d3]
one element per clock cycle and weight matrix via weight
402 as a one - dimensional input vector ?w0 wl w2 w3] one
element per clock cycle . Using computation unit 400 , the dot

product of the two input vectors is performed to produce a
scalar result at ResultOut 450 . For example , multiplier 430
is used to multiply each corresponding element of the input
weight and data vectors and the results are stored and added
to previous results in accumulator 424 . For example , the
result of element d0 multiplied by element wo (e . g . , d0 * w0)
is first stored in cleared accumulator 424 . Next , element di
is multiplied by element wl and added using adder 432 to
the previous result stored in accumulator 424 (e . g . , d0 * w0)
to compute the equivalent of d0 * wO + d1 * w1 . Processing
continues to the third pair of elements d2 and w2 to compute
the equivalent of d0 * w0 + d1 * wl + d2 * w2 at accumulator
424 . The last pair of elements is multiplied and the final
result of the dot product is now stored in accumulator 424
(e . g . , d0 * wO + d1 * w1 + d2 * w2 + d3 * w3) . The dot - product
result is then copied to shadow register 428 . Once stored in
shadow register 428 , a new dot - product operation may be
initiated , for example , using a different region of sensor data .
Based on ShiftEn signal 416 , the dot - product result stored in
shadow register 428 is shifted out of shadow register 428 to
ResultOut 450 . In various embodiments , the weight and data
matrices may be different dimensions than the example
above . For example , larger dimensions may be used .
[0064 . In some embodiments , a bias parameter is intro
duced and added to the dot - product result using accumulator
424 . In some embodiments , the bias parameter is received as
input at either weight 402 or data 404 along with a multi
plication identity element as the other input value . The bias
parameter is multiplied against the identity element to
preserve the bias parameter and the multiplication result
(e . g . , the bias parameter) is added to the dot - product result
using adder 432 . The addition result , a dot - product result
offset by a bias value , is stored in accumulator 424 and later
shifted out at ResultOut 450 using shadow register 428 . In
some embodiments , a bias is introduced using a vector
engine such as vector engine 111 of FIG . 1 .
[0065] FIG . 5 is a block diagram illustrating an embodi
ment of a cache - enabled microprocessor system for per
forming machine learning processing . The microprocessor
system of FIG . 5 includes hardware data formatters that
interface with a cache to prepare input values for a compu
tational array such as a matrix processor . In various embodi
ments , incorporating a memory cache and using hardware
data formatters to populate the cache increases the through
put of the matrix processor and allows the microprocessor
system to operate at a higher clock rate than would otherwise
be allowed . In the example shown , microprocessor system
500 includes control unit 501 , memory 502 , cache 503 , data
formatter 504 , weight formatter 506 , and matrix processor
507 . Input data and weight data are retrieved by hardware
data formatters 504 , 506 from memory 502 via cache 503 .
The retrieved input values are formatted using data formatter
504 and weight formatter 506 to prepare vector operands for
matrix processor 507 . In some embodiments , data formatter
504 and weight formatter 506 include a logic circuit for
preparing data for matrix processor 507 and / or a memory
cache or buffer for storing and processing input data . For
example , data formatter 504 may prepare N operands from
a two - dimensional array retrieved from memory 502 via
cache 503 . Weight formatter 506 may prepare M operands
retrieved from memory 502 via cache 503 that correspond to
weight values . Data formatter 504 and weight formatter 506
prepare the N and M operands to be processed by matrix
processor 507 .

US 2019 / 0026249 A1 Jan . 24 , 2019

100661 In various embodiments , microprocessor system
500 is microprocessor system 100 of FIG . 1 depicted with a
memory and memory cache . With respect to microprocessor
100 of FIG . 1 , in various embodiments , control unit 501 is
control unit 101 , data formatter 504 is data formatter 104 ,
weight formatter 506 is weight formatter 106 , and matrix
processor 507 is matrix processor 107 of FIG . 1 . Further ,
with respect to microprocessor 100 of FIG . 1 , in various
embodiments , data input 103 and weight input 105 of FIG .
1 are retrieved from memory 502 via cache 503 . In some
embodiments , microprocessor system 500 , including at least
hardware data formatter 504 , weight formatter 506 , and
matrix processor 507 , performs the processes described with
respect to FIGS . 7 and 8 and portions of processes described
with respect to FIGS . 2 and 3 .
[0067] In some embodiments , matrix processor 507 is a
computational array that includes a plurality of computation
units . For example , a matrix processor receiving M operands
and N operands from weight formatter 506 and data for
matter 504 , respectively , includes MxN computation units .
In the figure shown , the small squares inside matrix proces
sor 507 depict that matrix processor 507 includes a logical
two - dimensional array of computation units . Computation
unit 509 is one of a plurality of computation units of matrix
processor 507 . In some embodiments , each computation unit
is configured to receive one operand from data formatter 504
and one operand from weight formatter 506 . Matrix proces
sor 507 and computation unit 509 are described in further
detail with respect to matrix processor 107 and computation
unit 109 , respectively , of FIG . 1 . Input values to matrix
processor 507 are received from data formatter 504 and
weight formatter 506 and described in further detail with
respect to inputs from data formatter 104 and weight for
matter 106 to matrix processor 107 of FIG . 1 .
[0068] In the example shown , the dotted arrows between
data formatter 504 and matrix processor 507 and between
weight formatter 506 and matrix processor 507 depict a
coupling between the respective pairs of components that
are capable of sending multiple data elements such as a
vector of data elements . In various embodiments , the data
width of components data formatter 504 , weight formatter
506 , and matrix processor 507 are wide data widths and
include the ability to transfer more than one operand in
parallel . The data widths of components data formatter 504 ,
weight formatter 506 , and matrix processor 507 are
described in further detail with respect to corresponding
components data formatter 104 , weight formatter 106 , and
matrix processor 107 of FIG . 1 .
[0069] In various embodiments , the arrows in FIG . 5
describe the direction data and / or control signals flow from
component to component . In some embodiments , the con
nections depicted by the one - direction arrows in FIG . 5 (e . g . ,
between data formatter 504 and cache 503 , between weight
formatter 506 and cache 503 , and between cache 503 and
memory 502) may be bi - directional and thus the data and / or
control signals may flow in both directions . For example , in
some embodiments , control signals , such as a read request
and / or data , can flow from cache 503 to memory 502 .
[0070] In various embodiments , memory 502 is typically
static random access memory (SRAM) . In some embodi
ments , memory 502 has a single read port or a limited
number of read ports . In some embodiments , the amount of
memory 502 dedicated to storing data (e . g . , sensor data ,
image data , etc .) , weights (e . g . , weight associated with

image filters , etc .) , and / or other data may be dynamically
allocated . For example , memory 502 may be configured to
partition more or less memory for data input compared to
weight input based on a particular workload . In some
embodiments , cache 503 includes one or more cache lines .
For example , in some embodiments , cache 503 is a 1 KB
cache that includes four cache lines where each cache line is
256 bytes . In various embodiments , the size of the cache
may be larger or small , with fewer or more cache lines , have
larger or smaller cache lines , and may be determined based
on expected computation workload .
10071] In various embodiments , hardware data formatters
(e . g . , data formatter 504 and weight formatter 506) calculate
memory addresses to retrieve input values from memory 502
and cache 503 for processing by matrix processor 507 . In
some embodiments , data formatter 504 and / or weight for
matter 506 stream data corresponding to a subset of values
stored consecutively in memory 502 and / or cache 503 . Data
formatter 504 and / or weight formatter 506 may retrieve one
or more subsets of values stored consecutively in memory
and prepare the data as input values for matrix processor
507 . In various embodiments , the one or more subsets of
values are not themselves stored consecutively in memory
with other subsets . In some embodiments , memory 502
contains a single read port . In some embodiments , memory
502 contains a limited number of read ports and the number
of read ports is fewer than the data width of components data
formatter 504 , weight formatter 506 , and matrix processor
507 . In some embodiments , hardware data formatters 504 ,
506 will perform a cache check to determine whether a
subset of values is in cache 503 prior to issuing a read
request to memory 502 . In the event the subset of values is
cached , hardware data formatters 504 , 506 will retrieve the
data from cache 503 . In various embodiments , in the event
of a cache miss , hardware data formatters 504 , 506 will
retrieve the entire subset of values from memory 502 and
populate a cache line of cache 503 with the retrieved values .
[0072 In some embodiments , control unit 501 initiates
and synchronizes processing between components of micro
processor system 500 , including components memory 502 ,
data formatter 504 , weight formatter 506 , and matrix pro
cessor 507 . In some embodiments , control unit 501 coordi
nates access to memory 502 including the issuance of read
requests . In some embodiments , control unit 501 interfaces
with memory 502 to initiate read requests . In various
embodiments , the read requests are initiated by hardware
data formatters 504 , 506 via the control unit 501 . In various
embodiments , control unit 501 synchronizes data that is fed
to matrix processor 507 from data formatter 504 and weight
formatter 506 . In some embodiments , control unit 501
synchronizes the data between different components of
microprocessor system 500 including between data format
ter 504 , weight formatter 506 , and matrix processor 507 , by
utilizing processor specific memory , queue , and / or dequeue
operations and / or control signals . Additional functionality
performed by control unit 501 is described in further detail
with respect to control unit 101 of FIG . 1 .
[0073] In some embodiments , microprocessor system 500
is utilized for performing convolution operations . For
example , matrix processor 507 may be used to perform
calculations , including dot - product operations , associated
with one or more convolution layers of a convolution neural
network . Data formatter 504 and weight formatter 506 may
be utilized to prepare matrix and / or vector data in a format

US 2019 / 0026249 A1 Jan . 24 , 2019

for processing by matrix processor 507 . Memory 502 may
be utilized to store data such as one or more image channels
captured by sensors (not shown) . Memory 502 may also
include weights , including weights in the context of convo
lution filters , determined by training a machine learning
model for autonomous driving .
[0074] In various embodiments , microprocessor system
500 may include additional components (not shown in FIG .
5) , including processing components , such as a vector
processor and a post - processing unit . An example of a vector
processor and its associated functionality is vector engine
111 of FIG . 1 . An example of a post - processing unit and its
associated functionality is post - processing unit 115 of FIG .

[0075] FIG . 6 is a block diagram illustrating an embodi
ment of a hardware data formatter , cache , and memory
components of a microprocessor system . In the example
shown , the components include memory 601 , cache 603 ,
and hardware data formatter 605 . Memory 601 is commu
nicatively connected to cache 603 and cache 603 is com
municatively connected to hardware data formatter 605 .
Cache 603 includes four cache lines 611 , 613 , 615 , and 617 .
Hardware data formatter 605 includes twelve read buffers
621 - 632 . Read buffers 621 - 632 are each 8 - byte read buffers .
In various embodiments , the number of and size of the read
buffers may be fewer or more than depicted in the embodi
ment of FIG . 6 . For example , read buffers 621 - 632 are sized
to accommodate a 96 element input vector , where each
element is 1 - byte , to a computational array . In various
embodiments , read buffers 621 - 632 may be implemented as
a single wide register , a single memory storage location ,
individual registers , or individual memory storage locations ,
among other implementations , as appropriate . In some
embodiments , memory 601 and cache 603 are memory 502
and cache 503 of FIG . 5 , respectively . In some embodi
ments , hardware data formatter 605 is data formatter 104
and / or weight formatter 106 of FIG . 1 . In some embodi
ments , hardware data formatter 605 is data formatter 504
and / or weight formatter 506 of FIG . 5 .
[0076] In various embodiments , a control unit (not shown)
such as control unit 101 of FIG . 1 and a computational array
(not shown) such as matrix processor 107 of FIG . 1 are
components of the microprocessor system . For example , a
control unit sends signals to synchronize the processing of
computational operations and / or access to memory 601 . In
various embodiments , a computational array receives input
vectors from one or more hardware data formatters as input
operands . For example , a matrix processor may receive two
vector inputs , one from a data formatter and one from a
weight formatter , to perform matrix processing on . As
another example , a matrix processor may receive two matri
ces , one from a data formatter and one from a weight
formatter , to perform matrix processing on . In various
embodiments , multiple clock cycles are needed to feed an
entire matrix into a computational array . For example , in
some embodiments , at most one row (and / or column) of a
matrix is fed into a computational array each clock cycle .
[0077] In various embodiments , the output of hardware
data formatter 605 is fed as input to a computational array
such as matrix processor 107 of FIG . 1 and matrix processor
507 of FIG . 5 . In various embodiments , each element of
each read buffer of hardware data formatter 605 is fed into
a computation unit of a computational array . For example ,
the first byte of read buffer 621 is fed into a first computation

unit of a computational array , the second byte of read buffer
621 is fed into a second computation unit of a computational
array , the third byte of read buffer 621 is fed into a third
computation unit of a computational array , and so forth , with
the last byte of read buffer 621 (i . e . , the eighth byte) feeding
into the eighth computation unit of a computational array .
The next read buffer then feeds its elements into the next set
of computation units . For example , the first byte of read
buffer 622 is fed into a ninth computation unit of a compu
tational array and the last byte of read buffer 632 is fed into
a ninety - sixth computation unit of a computational array . In
various embodiments , the size and number of the read
buffers and the number of computation units may vary . As
explained above , in the example shown , hardware data
formatter 605 includes 12 read buffers 621 - 632 configured
to each store eight consecutive bytes . Hardware data for
matter 605 may be configured to feed into a computation
unit that may receive at least one input vector of 96 1 - byte
elements .
[0078] In some embodiments , only a portion of the ele
ments in read buffers 621 - 632 is utilized as input to a
computational array . For example , a two - dimensional 80x80
matrix may only utilize read buffers 621 - 630 (corresponding
to 80 bytes , numbered bytes 0 - 79) to feed an 80 - element row
into a matrix processor . In various embodiments , hardware
data formatter 605 may perform additional processing on
one or more elements of read buffers 621 - 632 to prepare the
elements as input to a computational array . For example , a
computational array may be configured to receive 48 16 - bit
elements instead of 96 8 - bit elements and hardware data
formatter 605 may be configured to combine pairs of 1 - byte
elements to form 16 - bit elements to prepare a 48 16 - bit input
vector for the computational array .
10079] In various embodiments , cache 603 is a memory
cache of memory 601 . In some embodiments , memory 601
is implemented using static random access memory
(SRAM) . In some embodiments , cache 603 is a 1 KB
memory cache and each cache line 611 , 613 , 615 , and 617
is 256 bytes . In various embodiments , reading data into
cache 603 loads an entire cache line of data into one of cache
lines 611 , 613 , 615 , and 617 . In various embodiments , cache
603 may be larger or small and have fewer or more cache
lines . Moreover , in various embodiments , the cache lines
may be a different size . The size and configuration of cache
603 , cache lines 611 , 613 , 615 , and 617 , and memory 601
may be sized as appropriate for the particular workload of
computational operations . For example , the size and number
of image filters used for convolution may dictate a larger or
smaller cache line and a larger or smaller cache .
[0080] In the example shown , the dotted - lined arrows
originating from read buffers 621 - 632 indicate whether the
data requested by hardware data formatter 605 exists as a
valid entry in cache 603 and in particular which cache line
holds the data . For example , read buffers 621 , 622 , and 623
request data that is found in cache line 611 . Read buffers 626
and 627 request data that is found in cache line 613 and read
buffers 630 , 631 , and 632 request data that is found in cache
line 617 . In various embodiments , each read buffer stores a
subset of values located consecutively in the memory . The
subsets of values stored at read buffers 621 , 622 , and 623
may not be located consecutively in memory with the
subsets of values stored at read buffers 626 and 627 and also
may not be located consecutively in memory with the
subsets of values stored at read buffers 630 , 631 , and 632 . In

US 2019 / 0026249 A1 Jan . 24 , 2019

some scenarios , read buffers referencing the same cache line
may store subsets of values that are not located consecu
tively in memory . For example , two read buffers may
reference the same cache line of 256 bytes but different
8 - byte subsets of consecutive values .
[0081] In the example shown , the data requested for read
buffers 624 , 625 , 628 , and 629 are not found in cache 603
and are cache misses . In the example shown , an “ X ” depicts
a cache miss . In various embodiments , cache misses must be
resolved by issuing a read for the corresponding subset of
data from memory 601 . In some embodiments , an entire
cache line containing the requested subset of data is read
from memory 601 and placed into a cache line of cache 603 .
Various techniques for cache replacement may be utilized as
appropriate . Examples of cache replacement policies for
determining the cache line to use include First In First Out ,
Least Recently Used , etc .
10082] In some embodiments , each of read buffers 621 -
632 stores a subset of values located consecutively in
memory . For example , in the example shown , read buffer
621 is 8 - bytes in size and stores a subset of 8 - bytes of values
stored consecutively in memory . In various embodiments ,
the values are located consecutively in memory 601 and read
as a continuous block of values into a cache line of cache
603 . By implementing read buffers using the concept of a
subset of values , where each of the values is located con
secutively in memory , each read buffer is capable of loading
multiple elements (e . g . , up to eight elements for an 8 - byte
read buffer) together . In the example shown , a fewer number
of reads are required than the number of elements to
populate every read buffer with an element . For example , up
to twelve reads are required to load 96 - elements into the
twelve read buffers 621 - 632 . In many scenarios , even fewer
reads are necessary in the event that a cache contains the
requested subset of data . Similarly , in some scenarios , a
single cache line is capable of storing the data requested for
multiple read buffers .
[0083] In some embodiments , read buffers 621 - 632 are
utilized by hardware data formatter 605 to prepare input
operands such as an vector of inputs for a computational
array , such as matrix processor 107 of FIG . 1 . In some
embodiments , the 96 - bytes stored in read buffers 621 - 632
correspond to a 96 - element input vector for a computational
array . In some embodiments , hardware data formatter 605
selects elements from read buffers 621 - 632 to accommodate
a particular stride when performing a computational opera
tion such as convolution . In some embodiments , hardware
data formatter 605 selectively filters out the elements from
read buffers 621 - 632 that are not required for the computa
tional operation . For example , hardware data formatter may
only utilize a portion of the elements from each read buffer
(e . g . , every other byte of a read buffer) as the input vector
elements for the computational array . In some embodiments ,
the filtering is performed using a multiplexer to selectively
include elements from read buffers 621 - 632 when preparing
an input vector for a computational operation . In various
embodiments , the unused bytes of the read buffer may be
discarded .
10084] As an example , in a scenario with a stride param
eter set to two , the initial input elements for a convolution
operation are every other element of a row of an input
matrix . Depending on the input matrix size , the elements
include the 1st , 3rd , 5th , and 7th elements , etc . , for the first
group of input elements necessary for a convolution opera

tion . Read buffer 621 is configured to read the first 8
elements (1 through 8) , and thus elements 2 , 4 , 6 , and 8 are
not needed for a stride of two . As another example , using a
stride of five , four elements are skipped when determining
the start of the next neighboring region . Depending on the
size of the input data , the 1st , 6th , 11th , 16th , and 21st
elements , etc . , are the first input elements necessary for a
convolution operation . The elements 2 - 5 and 7 - 8 are loaded
into a read buffer 621 but are not used for calculating the first
dot - product component result corresponding to each region
and may be filtered out .
[0085] In various embodiments , each read buffer loads
eight consecutive elements and can satisfy two elements for
a stride of five . For example , read buffer 621 initiates a read
at element 1 and also reads in element 6 , read buffer 621
initiates a read at element 11 and also reads in element 16 ,
read buffer 622 initiates a read at element 21 and also reads
in element 26 , etc . In some embodiments , the reads are
aligned to multiples of the read buffer size . In some embodi
ments , only the first read buffer is aligned to a multiple of the
read buffer size . In various embodiments , only the start of
each matrix row must be aligned to a multiple of the read
buffer size . Depending on the stride and the size of the input
matrix , in various embodiments , only a subset of the read
buffers may be utilized . In various embodiments , the ele
ments corresponding to least twelve regions , one element for
each read buffer 621 - 632 , are loaded and fed to a compu
tational array in parallel . In various embodiments , the num
ber of input elements provided in parallel to a computational
array is at least the number of read buffers in the hardware
data formatter .
(0086] In some embodiments , the elements not needed for
the particular stride are filtered out and not passed to the
computational array . In various embodiments , using , for
example , a multiplexer , the input elements conforming to the
stride are selected from the loaded read buffers and format
ted into an input vector for a computational array . Once the
input vector is formatted , hardware data formatter 605 feeds
the input vector to the computational array . The unneeded
elements may be discarded . In some embodiments , the
unneeded elements may be utilized for the next dot - product
component and a future clock cycle and are not discarded
from read buffers 621 - 632 . In various embodiments , the
elements not needed for implementing a particular stride are
fed as inputs to a computational array and the computational
array and / or post - processing will filter the results to remove
them . For example , the elements not needed may be pro
vided as input to a computation array but the computation
units corresponding to the unnecessary elements may be
disabled .

[0087] In some embodiments , hardware data formatter
605 formats the input vector for a computational array to
include padding . For example , hardware data formatter 605
may insert padding using read buffers 621 - 632 . In various
embodiments , one or more padding parameters may be
described by a control unit using a control signal and / or
instruction parameter .
[0088] In some embodiments , hardware data formatter
605 determines a set of addresses for preparing operands for
a computational array . For example , hardware data formatter
605 calculates associated memory locations required to load
a subset of values , determines whether the subset is cached ,
and potentially issues a read to memory for the subset in the
event of a cache miss . In some scenarios , a pending read

US 2019 / 0026249 A1 Jan . 24 , 2019

may satisfy a cache miss . In various embodiments , hardware
data formatter 605 only processes the memory address
associated with the start element and end element of each
read buffer 621 - 632 . In various embodiments , each read
buffer 621 - 632 associates the validity of the cache entry for
a subset of values with the memory addresses of the start and
end values of the corresponding read buffer . In the example
shown , read buffer 621 is configured to store 8 - bytes cor
responding to up to eight elements . In various embodiments ,
hardware data formatter 605 calculates the address of the
first element and the address of the last element of read
buffer 621 . Hardware data formatter 605 performs a cache
check on the first and last element addresses . In the event
either of the addresses is a cache miss , hardware data
formatter 605 issues a memory read for 8 - bytes starting at
the address of the first element . In the event that both
addresses are a cache hit from the same cache line , hardware
data formatter 605 considers every element in the subset to
be a valid cache hit and loads the subset of values from the
cache via the appropriate cache line . In this manner , an entire
row of elements may be loaded by processing the addresses
of at most the first and last addresses of each read buffer
621 - 632 (e . g . , at most 24 addresses) .
[0089] FIG . 7 is a flow diagram illustrating an embodi
ment of a process for performing machine learning process
ing . The process of FIG . 7 describes a pipeline for slicing
one or more matrices to fit a computational array , receiving
a computational operation for the sliced matrix or matrices ,
preparing the data for performing the operation , and com
puting one or more results associated with the operation .
Depending on the application , the process of FIG . 7 may be
repeated on different slices of a matrix and the results
combined . For example , a frame of image data larger than a
computational array may be sliced into smaller matrices and
computational operations performed on the sliced matrices .
The results of multiple passes of FIG . 7 on different slices
may be combined to generate the result of a computational
operation on the entire frame . In various embodiments , the
process of FIG . 7 is performed by a microprocessor system
such as the microprocessor system of FIGS . 1 and 5 . In
various embodiments , the process of FIG . 7 is utilized to
implement applications relying on computational operations
such as convolution . For example , the process of FIG . 7 may
be utilized to implement a machine learning application that
performs inference using a machine learning model . In some
embodiments , the process of FIG . 7 is utilized to implement
the processes of FIGS . 2 and 3 .
[0090] At 701 , one or more matrices may be sliced . In
some embodiments , the size of a matrix , for example , a
matrix representing a frame of vision data , is larger than will
fit in a computational array . In the event the matrix exceeds
the size of the computational array , the matrix is sliced into
a smaller two - dimensional matrix with a size limited to the
appropriate dimensions of the computational array . In some
embodiments , the sliced matrix is a smaller matrix with
addresses to elements referencing the original matrix . In
various embodiments , the sliced matrix is serialized into a
vector for processing . In some embodiments , each pass of
the process of FIG . 7 may slice a matrix into a different slice
and slices may overlap with previous slices . In various
embodiments , a data matrix and a weight matrix may both
be sliced , although typically only a data matrix will require
slicing . In various embodiments , matrices may be sliced
only at boundaries corresponding to multiples of the read

buffer size of a hardware data formatter . For example , in the
event each read buffer is 8 - bytes in size , each row of a sliced
matrix must begin with an address having a multiple of
eight . In the event a matrix fits within the computational
array , no slicing is required (i . e . , the matrix slice used for the
remaining steps of FIG . 7 is simply the original matrix) . In
various embodiments , the matrix slice (s) are used as input
matrices for the computational operation of 703 .
[0091] At 703 , a computational operation is received . For
example , a matrix operation is received by the micropro
cessor system . As one example , a computational operation
requesting a convolution of an image with a filter is
received . In some embodiments , the operation may include
the necessary parameters to perform the computational
operation including the operations involved and the oper
ands . For example , the operation may include the size of the
input operands (e . g . , the size of each input matrix) , the start
address of each input matrix , a stride parameter , a padding
parameter , and / or matrix , vector , and / or post - processing
commands . For example , a computational operation may
describe an image data size (e . g . , 96x96 , 1920x1080 , etc .)
and bit depth (e . g . , 8 - bits , 16 - bits , etc .) and a filter size and
bit depth , etc . In some embodiments , the computational
operation is received by a control unit such as control unit
101 of FIG . 1 and 501 of FIG . 5 . In some embodiments , a
control unit processes the computational operation and per
forms the necessary synchronization between components
of the microprocessor system . In various embodiments , the
computational operation is a hardware implementation using
control signals . In some embodiments , the computational
operation is implemented using one or more processor
instructions .
10092] . At 705 , each hardware data formatter receives a
data formatting operation . In some embodiments , the data
formatting operation is utilized to prepare input arguments
for a computational array such as matrix processor 107 of
FIG . 1 and 507 of FIG . 5 . For example , each hardware data
formatter receives a data formatting operation that includes
information necessary to retrieve the data associated with a
computational operation (e . g . , a start address of a matrix , a
matrix size parameter , a stride parameter , a padding param
eter , etc .) and to prepare the data to be fed as input into the
computational array . In some embodiments , the data for
matting operation is implemented using control signals . In
some embodiments , the data formatting operation is
received by a hardware data formatter such as data formatter
104 and 504 of FIGS . 1 and 5 , respectively , and weight
formatter 106 and 506 of FIGS . 1 and 5 , respectively . In
some embodiments , hardware data formatter is hardware
data formatter 605 of FIG . 6 . In some embodiments , a
control unit such as control unit 101 of FIG . 1 and 501 of
FIG . 5 interfaces with a hardware data formatter to process
data formatting operations .
[0093] At 707 , data addresses are processed by one or
more hardware data formatters . For example , addresses
corresponding to elements of the computational operation
are processed by one or more hardware data formatters
based on the formatting operations received at 705 . In some
embodiments , the addresses are processed in order for the
hardware data formatter to load the elements (from a cache
or memory) and prepare an input vector for a computational
array . In various embodiments , a hardware data formatter
first calculates a pair of memory addresses for each subset of
values to determine whether a subset of elements exists in a

US 2019 / 0026249 A1 Jan . 24 , 2019
14

cache before issuing a request to memory in the event of a
cache miss . In various embodiments , a read request to
memory incurs a large latency that may be minimized by
reading elements from a cache . In some scenarios , all
elements are read from a cache and thus require any cache
misses to first populate the cache by issuing a read to
memory . To minimize the latency for each read , in various
embodiments , the reads are performed on subsets of ele
ments (or values) . In some embodiments , memory may only
have a limited number of read ports , for example , a single
read port , and all reads are processed one at a time . For
example , performing 96 independent reads incurs the
latency of 96 independent reads for a memory with a single
read port . To reduce read latency , subsets of values are read
together from memory into corresponding read buffers of a
hardware data formatter . For example , using subsets of eight
values , at most 12 memory reads are required to read 96
values . In the event some of the subsets are in the cache from
previous memory reads , even fewer memory reads are
required .
[0094] In various embodiments , subsets of values are
prepared by determining the memory addresses for the start
value of each subset (where each value corresponds to an
element) and the end value of each subset . For example , to
prepare a subset of 8 - values each of 1 - byte , a cache check
is performed using the calculated address of the start value
and the calculated address of the end value of the subset . In
the event either of the addresses are cache misses , a memory
read is issued to read 8 - bytes from memory beginning at the
address of the start value . In some embodiments , in addition
to reading the requested 8 - bytes from memory , an entire
cache line of data (corresponding to multiple subsets) is read
from memory and stored in the cache . In various embodi
ments , in the event the start and end addresses of a subset are
cached at the same cache line , the entire subset of values is
considered cached and no cache check is needed for the
remaining elements of the subset . The entire subset is
considered cached in the event the start and end elements are
cached in the same cache line . In various embodiments , the
processing at 707 determines the addresses of the start value
of the subset and the end value of the subset for each subset
of values . In various embodiments , one read buffer exists for
each subset of values . In various embodiments , read buffers
of a hardware data formatter are read buffers 621 - 632 of
hardware data formatter 605 of FIG . 6 .
[0095] In some embodiments , a stride parameter is imple
mented and non - consecutive subsets of values are loaded
into each read buffer . In various embodiments , each subset
of continuous values includes one or more elements needed
to implement a particular stride parameter . For example , for
a stride of one , every value in a subset of values located
consecutively in memory is a utilized element . As another
example , for a stride of two , every other value located
consecutively in memory is utilized and a subset of eight
consecutive values includes four utilized elements and four
that are not utilized . As another example , for a stride of five ,
a subset of eight values located consecutively in memory
may include two utilized elements and six unused elements .
For each subset of elements located consecutively in
memory , the memory addresses for the start and end ele
ments of the subset are determined and utilized to perform
a cache check at 709 . In various embodiments , the start
element of the subset is the first element of the subset . In
some embodiments , the end element of the subset is the last

element of the subset , regardless of whether the element is
utilized to implement the stride parameter . In some embodi
ments , the end element of the subset is the last utilized
element and not the last element of the subset .
[0096] In various embodiments , once the number of uti
lized elements that are included in a subset of consecutive
elements is determined , the next subset of elements begins
with the next element needed to satisfy the stride parameter .
The next element may result in a memory location that is
located at an address non - consecutive with the address of the
last element of the previous subset . As an example , using a
stride of five , four elements are skipped when determining
the start of the next subset of values . Depending on the size
of the input data , the 1st and 6th elements are stored in the
first subset of values , 11th and 16th elements in the second
subset of values , and 21st and 26th elements in the third
subset of values , etc . In various embodiments , the second
subset of values starts with the 11th element and the third
subset of values starts with the 21st element . Each subset is
located in memory at locations non - consecutive with the
other subsets . Examples of unused elements in the first
subset of values include the elements 2 - 5 and 7 - 8 . In some
embodiments , the first row of each matrix is aligned to a
multiple of the subset size . In some embodiments , this
alignment restriction is required to prevent gaps of invalid
values between rows when a matrix is serialized . In some
embodiments , all subsets are aligned to the multiple of the
subset size .
[0097] In various embodiments , each subset of values is
loaded in a read buffer such as read buffers 621 - 632 of FIG .
6 . Depending on the particular application (e . g . , the stride ,
the size of the input matrix , the size of the read buffer , the
number of read buffers , etc .) , some of the read buffers of a
hardware data formatter may not be utilized . In some
scenarios , the number of input elements provided in parallel
to a computational array is at least the number of subsets .
For example , a hardware data formatter supporting twelve
subsets of values can provide at least twelve elements in
parallel to a computational array .
[0098] In some embodiments , the formatting performed
by a hardware data formatter includes converting a matrix
into a vector with elements of the vector fed to a computa
tional array over multiple clock cycles . For example , in
some embodiments , a matrix corresponding to data (e . g . ,
image data) is formatted to prepare vectors corresponding to
sub - regions of the data . In some embodiments , each element
fed to a computational array for a particular clock cycle
corresponds to the n - th element of a vector associated with
a sub - region of the data . As an example , a 3x3 matrix may
be formatted into a one - dimensional vector of nine elements .
Each of the nine elements may be fed into the same
computation unit of a computational array . In various
embodiments , feeding the 9 elements requires are least 9
clock cycles .
[0099] At 709 , a determination is made whether the data
corresponding to the addresses determined for each subset at
707 are cached . For example , a cache check is performed on
each subset by determining whether the data associated with
the address of the start value of the subset and the address
of the end value of the subset is in the same cache line . In
various embodiments , a cache check is performed for each
read buffer , such as read buffers 621 - 632 of FIG . 6 , of a
hardware data formatter . In the event the data is cached , the
processing continues to 713 . In various embodiments , the

US 2019 / 0026249 A1 Jan . 24 , 2019
15

cache utilized is cache 503 of FIG . 5 and / or 603 of FIG . 6 .
In the event the data is not cached , processing continues to
711 .
[0100] At 711 , each requested subset of data is read into
the cache as an entire subset of values . In various embodi
ments , each subset data is read into the cache from memory .
In some embodiments , the memory is memory 502 of FIG .
5 and 601 of FIG . 6 . In some embodiments , an entire cache
line is read into the cache . For example , a cache miss for a
subset of values results in loading the subset of values into
a cache line along with the other data located consecutively
with the subset of values in memory . In some scenarios , a
single cache line is sufficient to cache multiple subsets .
[0101] At 713 , matrix processing is performed . For
example , a matrix processor performs a matrix operation
using the data cached and received by a hardware data
formatter . In various embodiments , the cached data is
received by the hardware data formatter and processed
according to a formatting operation by a hardware data
formatter into input values for matrix processing . In some
embodiments , the processing by the hardware data formatter
includes filtering out a portion of the received cached data .
For example , in some embodiments , subsets of values
located consecutively in memory are read into the cache and
received by the hardware data formatter . In various embodi
ments , a computational operation may specify a stride
and / or padding parameters . For example , to implement a
specified stride for convolution , one or more data elements
may be filtered from each subset of values . In some embodi
ments , only a subset of the elements from each of the subsets
of values is selected to create an input vector for matrix
processing .
10102] In various embodiments , the matrix processor per
forms the computational operation specified at 703 . For
example , a matrix processor such as matrix processor 107 of
FIG . 1 and 507 of FIG . 5 performs a matrix operation on
input vectors received by hardware data formatters . In
various embodiments , the matrix processor commences pro
cessing once all the input operands are made available . The
output of matrix processing is fed to 715 for optional
additional processing . In various embodiments , the result of
matrix processing is shifted out of a computational array one
vector at a time .
[0103] At 715 , vector and / or post - processing operations
are performed . For example , vector processing may include
the application of an activation function such as a rectified
linear unit (ReLU) function . In some embodiments , vector
processing includes scaling and / or normalization . In various
embodiments , vector processing is performed on one vector
of the output of a computational array at a time . In some
embodiments , vector processing is performed by a vector
processor such as vector engine 111 of FIG . 1 . In various
embodiments , post - processing operations may be performed
at 715 . For example , post - processing operations such as
pooling may be performed using a post - processor unit . In
some embodiments , post - processing is performed by a post
processing processor such as post - processing unit 115 of
FIG . 1 . In some embodiments , vector and / or post - processing
operations are optional operations .
[0104] FIG . 8 is a flow diagram illustrating an embodi
ment of a process for retrieving input operands for a com
putational array . The process of FIG . 8 describes a process
for preparing data elements by a hardware data formatter for
a computational array . For example , the input data is parti

tioned into subsets based on the number of read buffers of a
hardware data formatter . The process of FIG . 8 is utilized to
load the corresponding read buffers with data corresponding
to subsets of values located consecutively in memory . By
partitioning values into subsets based on memory location
and performing a single read on the entire subset instead of
an individual read for each element , the latency incurred
from accessing memory is reduced . In various embodiments ,
the process of FIG . 8 is performed by a microprocessor
system such as the microprocessor system of FIGS . 1 and 5 .
In various embodiments , the process of FIG . 8 is imple
mented at 707 , 709 , 711 , and 713 of FIG . 7 . In various
embodiments , the memory utilized by the process of FIG . 8
is memory 502 of FIG . 5 and 601 of FIG . 6 . In various
embodiments , the cache utilized by the process of FIG . 8 is
cache 503 of FIG . 5 and 603 of FIG . 6 . In various embodi
ments , the process of FIG . 8 is performed at least in part by
a hardware data formatter such as the hardware data for
matters of FIGS . 1 , 5 , and 6 . For example , a hardware data
formatter may be utilized to perform the steps of 801 , 803 ,
805 , 807 , 809 , 811 , 813 , and portions of 815 . In some
embodiments , the process of FIG . 8 is utilized to implement
the processes of FIGS . 2 and 3 .
[0105] In some embodiments , the process of FIG . 8 is
performed in parallel on different read buffers and / or subset
of values . For example , in a scenario with eight read buffers ,
the data to be loaded into the read buffers may be partitioned
into at most eight subsets and the process of FIG . 8 is
performed on each subset in parallel . In some embodiments ,
the number of subsets is based on capabilities of the cache
and / or the memory . For example , the number of subsets may
be based on how many simultaneous cache checks may be
performed on the cache and / or the number of simultaneous
reads to memory that may be issued .
[0106] At 801 , the first subset of data elements located
consecutively in memory is processed . In various embodi
ments , the first consecutive subset of data corresponds to the
data element designated for the first read buffer of a hard
ware data formatter . In some embodiments , the address of
the first element must be a multiple of the number of
elements in each subset . For example , using an 8 - byte read
buffer , the address of the first element must be a multiple of
eight .
0107] . At 803 , start and end memory addresses are deter
mined for the current subset . For example , the memory
address of the start element of a subset and the memory
address of the end element of a subset are determined . In
various embodiments , the start and end addresses are deter
mined by a hardware data formatter , such as the hardware
data formatters of FIGS . 1 , 5 , and 6 .
[0108] At 805 , a determination is made on whether the
subset of data is cached or pending a read . For example , a
determination is made whether the data corresponding to the
start and end addresses determined at 803 are cached at the
same cache line or will be cached as a result of an already
issued memory read . In some embodiments , a pending read
for a different subset brings an entire cache line of data into
memory and will result in caching the current subset . In the
event the data is not cached or will not be cached as a result
of a pending memory read , processing continues to 807 . In
the event the data is cached or will be cached by a pending
memory read , processing continues to 811 .
[0109] At 807 , a determination is made on whether a
memory read is already issued . In the event a memory read

US 2019 / 0026249 A1 Jan . 24 , 2019

is already issued , processing completes for the current clock
cycle . In the event a memory read has not been issued ,
processing continues to 809 . In some embodiments , the
memory is configured with a single read port (e . g . , to
increase density) and the memory can only process one read
at a time . In various embodiments , the determination of
whether a memory read has been issued is based on the
capability of the memory configuration and / or the availabil
ity of memory read ports . Not shown in FIG . 8 , in some
embodiments , in the event an additional memory read is
supported for the current clock cycle (despite a pending
read) , processing continues to 809 ; otherwise processing
completes for the current clock cycle .
[0110] At 809 , a read is issued to cache a subset of data
elements . For example , a block of memory beginning at the
start address determined at 803 and extending for the length
based on the size of a read buffer is read from memory into
the memory cache . In various embodiments , an entire cache
line of memory is read into the memory cache . For example ,
in a scenario with a cache line of 256 bytes and read buffers
each capable of storing 8 - bytes , a memory read will read 256
bytes of continuous data into a cache line , which corre
sponds to 32 subsets of non - overlapping 8 - byte values . In
various embodiments , reading a subset of values as a single
memory read request reduces the latency associated with
loading each element . Moreover , reading multiple subsets of
values together may further reduce the latency by caching
other subsets of values that may be associated with other
read buffers . In some embodiments , loading multiple subsets
of values takes advantage of potential locality between the
subsets resulting in lower latency .
[0111] At 811 , a determination is made on whether there
are additional subsets of data elements . In the event that
every subset has been processed , processing continues to
813 . In the event that there are additional subsets to be
processed , processing loops back to 803 . In some embodi
ments , depending on the input size , one or more read buffers
of a hardware data formatter may not be utilized .
[0112] At 813 , a determination is made on whether all the
data elements are cached . In the event some elements are not
cached , processing completes for the current clock cycle to
allow the non - cached data elements to be loaded from
memory into the cache . In the event all the data elements are
cached , the data elements are all available for processing and
processing proceeds to 815 .
[0113] At 815 , matrix processing is performed . For
example , the cached data elements are received at one or
more hardware data formatters , formatted , and fed as input
vector (s) to a computational array for processing . A com
putational array , such as matrix processor 107 of FIG . 1 and
507 of FIG . 5 , performs matrix processing on the input
vectors .
[0114] Although the foregoing embodiments have been
described in some detail for purposes of clarity of under
standing , the invention is not limited to the details provided .
There are many alternative ways of implementing the inven
tion . The disclosed embodiments are illustrative and not
restrictive .
What is claimed is :
1 . A microprocessor system , comprising :
a computational array that includes a plurality of compu

tation units , wherein each of the plurality of computa
tion units operates on a corresponding value addressed
from memory and the values operated by the plurality

of computation units are synchronously provided
together to the computational array as a group of values
to be processed in parallel ; and

a hardware data formatter configured to gather the group
of values .

2 . The system of claim 1 , wherein the group of values
includes a first subset of values located consecutively in the
memory and a second subset of values located consecutively
in the memory , and the first subset of values is not located
consecutively in the memory from the second subset of
values .

3 . The system of claim 1 , wherein the computational array
is configured to receive at least two vector input operands .

4 . The system of claim 1 , wherein each computation unit
of the plurality of computation units is configured to perform
a dot - product component operation using the group of
values in parallel .

5 . The system of claim 1 , wherein each computation unit
of the plurality of computation units includes an arithmetic
logic unit , an accumulator , and a shadow register .

6 . The system of claim 1 , wherein the group of values
corresponds to an input channel of vision data .

7 . The system of claim 1 , wherein the group of values
corresponds to sensor data .

8 . The system of claim 7 , wherein the sensor data is
non - image sensor data .

9 . The system of claim 8 , wherein the non - image sensor
data includes ultrasonic , radar , or LiDAR data .

10 . The system of claim 1 , wherein the group of values
corresponds to a convolution filter .

11 . The system of claim 10 , wherein the convolution filter
is constructed to identify features of an input data .

12 . The system of claim 2 , wherein the first subset of
values is retrieved from a cache using a single cache read .

13 . The system of claim 2 , wherein the first subset of
values and the second subset of values are retrieved from a
single cache line .

14 . The system of claim 1 , wherein the memory is
configured to dynamically adjust an allocation between a
first portion of the memory for a data input and a second
portion of the memory for a weight input .

15 . The system of claim 2 , wherein the hardware data
formatter is configured to determine a corresponding start
memory address for each of the first subset and the second
subset .

16 . The system of claim 15 , wherein the hardware data
formatter is configured to determine a corresponding end
memory address for each of the first subset of values and the
second subset of values .

17 . The system of claim 15 , wherein a cache check is
performed for each of the first subset and the second subset
including by determining whether a value stored at the
determined starting memory addresses for the first subset
has been cached and determining whether a value stored at
the determined starting memory addresses for the second
subset has been cached .

18 . The system of claim 2 , wherein a cache check is
performed for the first subset including by determining
whether a first value and a last value for the first subset are
stored in a cache .

19 . The system of claim 1 , wherein subsets of values
included in the group of values are selected based at least in
part on a padding parameter or a stride parameter .

US 2019 / 0026249 A1 Jan . 24 , 2019

20 . The method comprising :
receiving a computational operation ;
receiving a data formatting operation at a hardware data

formatter ;
retrieving a first group of values associated with an input

data , wherein the first group of values includes a first
subset of values located consecutively in a memory and
a second subset of values located consecutively in the
memory , and the first subset of values is not located
consecutively in the memory from the second subset of
values ;

retrieving a second group of values associated with a
weight data ;

providing in parallel the first group of values and the
second group of values to a computational array micro
processor ; and

processing the first group of values and the second group
of values as operands in parallel using the computa
tional array .

21 . A microprocessor system , comprising :
a computational array that includes a plurality of compu

tation units , wherein each of the plurality of computa
tion units operates on a corresponding value addressed
from memory and the values operated by the plurality
of computation units are synchronously provided
together to the computational array as a group of
values , wherein the group of values includes at least 96
values and the group of values includes at least 12
subsets of values ;

a hardware data formatter configured to gather the group
of values , wherein the group of values includes a first
subset of values located consecutively in the memory
and a second subset of values located consecutively in
the memory , and the first subset of values is not
required to be located consecutively in the memory
from the second subset of values .

* * * * *

