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( 57 ) ABSTRACT 
A system for handling errors in a neural network includes a 
neural network processor for executing a neural network 
associated with use of a vehicle . The neural network pro 
cessor includes an error detector configured to detect a data 
error associated with execution of the neural network and a 
neural network controller configured to receive a report of 
the data error from the error detector . In response to receiv 
ing the report , the neural network controller is further 
configured to signal that a pending result of the neural 
network is tainted without terminating execution of the 
neural network . 
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SYSTEM AND METHOD FOR HANDLING 
ERRORS IN A VEHICLE NEURAL 

NETWORK PROCESSOR 

TECHNICAL FIELD 

[ 0001 ] The present disclosure is directed to systems and 
methods for handling errors occurring in vehicles and more 
particularly to systems and methods for handling errors in a 
vehicle neural network processor . 

[ 0007 ] According to some embodiments , a method for 
handling errors in a neural network processor may include 
receiving an error report based on an error encountered by 
the vehicle neural network processor during operation of a 
vehicle , determining a type of the error based on the error 
report ; and , in response to determining that the type of the 
error corresponds to a data error , signaling that a pending 
result of the vehicle neural network processor is corrupt 
while allowing operation of the vehicle neural network 
processor to proceed . 
[ 0008 ] Summaries of embodiments are also provided by 
the claims that follow the description . 
[ 0009 ] It is to be understood that both the foregoing 
general description and the following detailed description 
are exemplary and explanatory in nature and are intended to 
provide an understanding of the present disclosure without 
limiting the scope of the present disclosure . In that regard , 
additional aspects , features , and advantages of the present 
disclosure will be apparent to one skilled in the art from the 
following detailed description . 

BACKGROUND 

BRIEF DESCRIPTION OF THE DRAWINGS 

[ 0002 ] Many vehicles today come equipped with a wide 
range of features designed to improve safety and reliability . 
In part , this is because vehicle accidents and / or breakdowns 
are accompanied by a high risk of personal injury , death , and 
property damage . At the very least , an accident and / or 
breakdown is likely to involve significant inconvenience 
and / or cost to the vehicle owner . Accordingly , many efforts 
have been made to develop improved safety features for 
vehicles . 
[ 0003 ] Increasingly , computers are being integrated into 
vehicles for purposes ranging from passenger comfort and 
entertainment to partial or full self - driving operation . While 
computers have the potential to address many safety and 
reliability issues in vehicles , they also introduce new risks 
and new modes of failure that have yet to be fully addressed . 
It is important that safeguards are put in place to ensure that 
computer - enabled and / or computer - assisted features of a 
vehicle do not increase the risk of operating the vehicle . 
Various strategies can be employed to test computer - imple 
mented vehicle features before they are put into production . 
However , even when thorough testing is performed , errors 
are still likely to be encountered when operating under 
real - world conditions . 
[ 0004 ] Accordingly , it would be advantageous to provide 
improved systems and methods for handling errors in pro 
cessors used in vehicular applications . 

[ 0010 ] FIG . 1 is a simplified diagram of a vehicle with a 
neural network processing system according to some 
embodiments . 
[ 0011 ] FIG . 2 is a simplified diagram of a system for 
processing a neural network according to some embodi 
ments . 
[ 0012 ] FIG . 3 is a simplified diagram of a timeout error 
detector according to some embodiments . 
[ 0013 ] FIG . 4 is a simplified diagram of a neural network 
processor with a debug mode according to some embodi 
ments . 
[ 0014 ] FIG . 5 is a simplified diagram of a method for error 
handling in a neural network processor according to some 
embodiments . 
[ 0015 ] Embodiments of the present disclosure and their 
advantages are best understood by referring to the detailed 
description that follows . It should be appreciated that like 
reference numerals are used to identify like elements illus 
trated in one or more of the figures , wherein showings 
therein are for purposes of illustrating embodiments of the 
present disclosure and not for purposes of limiting the same . 

SUMMARY 

DETAILED DESCRIPTION 

[ 0005 ] According to some embodiments , a system for 
handling errors in a neural network may include a neural 
network processor for executing a neural network associated 
with use of a vehicle . The neural network processor includes 
an error detector configured to detect a data error associated 
with execution of the neural network and a neural network 
controller configured to receive a report of the data error 
from the error detector . In response to receiving the report , 
the neural network controller is further configured to signal 
that a pending result of the neural network is tainted without 
terminating execution of the neural network . 
[ 0006 ] According to some embodiments , a system may 
include a neural network processor for executing a neural 
network associated with autonomous operation of a vehicle 
and an interrupt controller coupled to the neural network 
processor . The interrupt controller is configured to receive 
an error signal via an error interrupt pin of the neural 
network processor , access error information via one or more 
status registers of the neural network processor , the error 
information indicating a type of error encountered by the 
neural network processor , and , when the type of the error 
corresponds to a data error , identify a pending result of the 
neural network processor as corrupt . 

[ 0016 ] In the following description , specific details are set 
forth describing some embodiments consistent with the 
present disclosure . Numerous specific details are set forth in 
order to provide a thorough understanding of the embodi 
ments . It will be apparent , however , to one skilled in the art 
that some embodiments may be practiced without some or 
all of these specific details . The specific embodiments dis 
closed herein are meant to be illustrative but not limiting . 
One skilled in the art may realize other elements that , 
although not specifically described here , are within the 
scope and the spirit of this disclosure . In addition , to avoid 
unnecessary repetition , one or more features shown and 
described in association with one embodiment may be 
incorporated into other embodiments unless specifically 
described otherwise or if the one or more features would 
make an embodiment non - functional . In some instances well 
known methods , procedures , components , and circuits have 
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not been described in detail so as not to unnecessarily 
obscure aspects of the embodiments . 
[ 0017 ] Neural networks use patterns extracted from large 
data sets to make predictions based on input data . The 
predictions can include classifying the input data ( e . g . , 
labeling objects in an image ) , making decisions based on the 
input data ( e . g . , steering an autonomous vehicle or selecting 
a move in a game ) , clustering the input data , and / or the like . 
In general , it is possible to run neural networks using general 
purpose computing hardware . However , the performance of 
a neural network can often be significantly improved using 
application - specific hardware . For example , computing a 
neural network may involve matrix operations that may be 
efficiently performed using single - input multiple - data 
( SIMD ) processing techniques with an application - specific 
hardware implementation . 
[ 0018 ] While designing and using an application - specific 
neural network processor may offer performance advan 
tages , the application - specific hardware may encounter 
errors that are unique to the neural network processor and / or 
occur more frequently in the neural network processor than 
in general purpose processors . Moreover , the process of 
developing and testing the application - specific hardware 
may be more time - consuming and / or costly than an off - the 
shelf solution . Accordingly , it is desirable to provide 
improved systems and methods for processing neural net 
works and for handling errors encountered during bring - up 
and production of a neural network processor , such as a 
vehicle neural network processor used in the operation of a 
vehicle . 
[ 0019 ] FIG . 1 is a simplified diagram of a vehicle 100 with 
a neural network processing system according to some 
embodiments . According to some embodiments , vehicle 100 
may correspond to a land vehicle such as a car , motorcycle , 
or truck , an air vehicle such as an airplane , spacecraft , drone , 
or satellite , a water vehicle such as a boat or submarine , 
and / or the like . In some examples , vehicle 100 may be a 
fully electric vehicle , a hybrid electric vehicle , a gasoline 
powered vehicle , and / or the like . 
[ 0020 ] In some examples , vehicle 100 may be fully or 
partially self - driving . Consistent with such embodiments , 
vehicle 100 may be equipped with one or more sensors 110 
that collect data associated with vehicle 100 and / or its 
surroundings . The sensor data may include image data , 
audio data , time - series data , and / or the like . Illustrative 
examples of sensors 110 include cameras ( including visible 
light cameras , infrared cameras , and / or the like ) , micro 
phones , temperature sensors , LIDAR units , accelerometers , 
tachometers , and / or the like . 
[ 0021 ] In some embodiments , vehicle 100 may include a 
controller 120 to perform real - time decision - making tasks 
associated with autonomously driving vehicle 100 . For 
example , the autonomous driving tasks may include identi 
fying or classifying objects in the vicinity of vehicle 100 , 
controlling the steering , transmission , acceleration , and / or 
braking of vehicle 100 , providing alerts to a driver of vehicle 
100 , transmitting driving data to a remote server , and / or the 
like 
[ 0022 ] In some examples , controller 120 may control 
operation and / or execution of hardware and / or software . In 
some examples , controller 120 may include one or more 
processors , CPUs , multi - core processors , field program 
mable gate arrays ( FPGAs ) , application specific integrated 
circuits ( ASICs ) , and / or the like . In some examples , con 

troller 120 may further include memory , which may include 
one or more types of machine readable media . Some com 
mon forms of machine readable media may include floppy 
disk , flexible disk , hard disk , magnetic tape , any other 
magnetic medium , CD - ROM , any other optical medium , 
punch cards , paper tape , any other physical medium with 
patterns of holes , RAM ( e . g . , DRAM , SRAM , etc . ) , PROM , 
EPROM , FLASH - EPROM , any other memory chip or car 
tridge , and / or any other medium from which a processor or 
computer is adapted to read . In some examples , controller 
120 may include multiple chips in multiple packages , mul 
tiple chips in a single package ( e . g . , system - in - package 
( SIP ) ) , and / or a single chip ( e . g . , system - on - chip ( SOC ) ) . 
[ 0023 ] During driving operation , controller 120 may 
receive streams of real - time input data from sensors 110 . In 
some examples , controller 120 may process the input data 
from sensors 110 using a neural network . For example , the 
neural network may include a series of layers , where each 
layer operates on the output of one or more previous layers . 
The layers are configured using weights and / or biases that 
are “ learned ” based on training data using machine learning 
techniques . Examples of layers include convolutional layers , 
densely connected layers , recurrent layers , activation layers , 
pooling layers , and / or the like . In some examples , the neural 
network may be defined using one or more model definition 
files that describe the structure of the neural network , one or 
more parameter files that include pretrained weights and / or 
biases of the neural network , and / or the like . 
[ 0024 ] In an illustrative example , the neural network may 
be an image recognition network that is trained to label 
objects that appear in an image . For example , the input data 
to the neural network may correspond to an image ( or a 
batch of images ) captured by a camera of vehicle 100 . 
Consistent with this example , one or more first layers of the 
neural network may be implemented as convolutional lay 
ers , and one or more last layers of the neural network model 
may be implemented as densely connected layers . The 
convolutional layers apply pretrained filters that determine 
whether certain features appear in the image . For example , 
the pretrained filters may correspond to particular shapes , 
colors , heat signatures , movement , sizes of sub - images , 
and / or patterns in the image , as well as the size and / or global 
parameters of the image . The densely connected layers then 
map the set of features appearing in the image to labeled 
objects ( e . g . , " pedestrian , " " tree , ” “ lane marker , " " stop 
sign , " etc . ) . 
[ 0025 ] In many cases , processing neural networks is data 
and / or computationally intensive . For example , a deep con 
volutional neural network used for image recognition may 
include millions or billions of parameters . Correspondingly , 
a forward pass through the neural network may involve 
millions or billions of computations . Accordingly , it may be 
desirable to process the neural network using dedicated 
computational resources ( e . g . , hardware and / or software 
resources ) so as to improve the performance of the neural 
network and / or reduce interference between the execution of 
the neural network and other applications of controller 110 . 
In some embodiments , controller 120 may process the 
neural network using a neural network processor 130 , which 
may include one or more processor cores that are substan 
tially dedicated to processing neural networks . For example , 
neural network processor 130 may be implemented using 
application specific integrated circuits ( ASIC ) and / or a field 
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programmable gate array ( FPGA ) to achieve hardware 
accelerated performance when executing the neural net 
works . 
[ 0026 ] . In some examples , neural network processor 130 
may process multiple neural networks in series and / or in 
parallel . For example , neural network processor 130 may 
process a first image recognition model that receives a 
stream of input data from a front - facing camera , a second 
image recognition model that receives a stream of input data 
from a rear - facing camera , an audio recognition model that 
receives audio data from a microphone , and / or the like . 
Consistent with such examples , neural network processor 
130 may sequentially process each model as new frames of 
image and / or audio data are received . In other examples , 
multiple neural networks may be processed in parallel using 
multiple neural network processors and / or processor cores . 
[ 0027 ] . Although controller 120 and neural network pro 
cessor 130 are depicted as being integrated into vehicle 100 
for illustrative purposes , it is to be understood that controller 
120 and / or neural network processor 130 may be located 
on - board and / or off - board vehicle 100 . For example , vehicle 
100 may transmit input sensor data to neural network 
processor 130 in a remote location via a network . Moreover , 
neural network processor 130 may be used to process neural 
networks in a wide variety of contexts , including non 
vehicular contexts . For example , neural network processor 
130 may be used for applications such as general purpose 
computing , mobile computing , server - based applications , 
embedded applications , industrial manufacturing , and / or the 
like . 
[ 0028 ] In autonomous driving applications , as well as in 
other applications , one objective of neural network proces 
sor 130 is to operate continuously and reliably . For example , 
neural network processor 130 may have a limited amount of 
time to operate on the input data before the input data 
becomes stale ( i . e . , the input data is no longer representative 
of the current state and / or surroundings of vehicle 100 ) . In 
some circumstances , this may occur within a few hundredths 
of a second , as in the case of a fast - moving vehicle . In this 
regard , loss of functionality , processing delays , and / or aber 
rant behavior of neural network processor 130 while vehicle 
100 is in motion could cause an accident , resulting in 
property damage , injury , and / or death . 
10029 ] The effect of a particular error on neural network 
processor 130 may vary depending on the type of the error . 
Some types of errors may cause neural network processor 
130 to hang or time out . That is , one or more portions of 
neural network processor 130 may freeze or otherwise 
remain inactive for more than a predetermined amount of 
time . When a timeout error is encountered , neural network 
processor 130 may cease to provide output data and / or 
respond to input data . Other types of errors , such as program 
errors and / or data errors , may cause the output data gener 
ated by neural network processor 130 to be corrupted . When 
such errors are encountered , neural network processor 130 
may continue to provide output data , but the result may be 
incorrect , meaningless , and / or otherwise unusable . 
( 0030 ] To address safety concerns associated with such 
errors , neural network processor 130 may include safety 
features to prevent , detect , and / or respond to errors . The 
safety features may be implemented and / or activated at 
various stages of the design - cycle of neural network pro 
cessor 130 . For example , the design - cycle of neural network 
processor 130 may include a bring - up stage and a production 

stage . During bring - up , neural network processor 130 may 
undergo testing to verify that the functionality of neural 
network processor 130 is as expected . For example , bring - up 
may occur after neural network processor 130 has been 
designed and taped - out to a manufacturer , but before neural 
network processor 130 is put into production . Defects that 
are discovered during bring - up can then be safely addressed 
before neural network processor 130 is deployed in a 
production model of vehicle 100 or otherwise provided to 
end consumers . For example , during bring - up , neural net 
work processor 130 may be placed in a standalone test 
environment and / or in a prototype model of vehicle 100 . 
[ 0031 ] In some examples , neural network processor 130 
may have a high level of complexity and / or may include a 
number of sub - systems , each of which may be designed by 
different teams and / or vendors . In light of this complexity , 
the process of testing of neural network processor 130 
during bring - up may be extensive ( e . g . , occurring over a 
period of weeks or months ) and may have a substantial 
impact on the overall safety and reliability of neural network 
processor 130 and vehicle 100 . For example , the testing may 
reveal undesirable and / or erroneous behavior that was not 
caught during the design of neural network processor 130 . 
Consequently , as will be discussed in further detail below 
with reference to FIGS . 2 - 5 , neural network processor 130 
may include safety features that accelerate and / or improve 
the ability to detect , analyze , and / or debug defects during 
bring - up . 
10032 ] Even with extensive testing during bring - up , neural 
network processor 130 may still encounter errors during 
production ( e . g . , when deployed in a production model of 
vehicle 100 ) . During production , unlike bring - up , it is gen 
erally desirable for neural network processor 130 to 
smoothly recover from an error with minimal disruption 
and / or downtime . In particular , neural network processor 
130 may be responsible for performing real - time decision 
making tasks associated with driving vehicle 100 . Therefore , 
as will be discussed in further detail below with reference to 
FIGS . 2 - 5 , neural network processor 130 may include safety 
features to efficiently move past errors and restore normal 
operation as quickly as possible during the production stage . 
[ 0033 ] FIG . 2 is a simplified diagram of a system 200 for 
processing a neural network according to some embodi 
ments . According to some embodiments consistent with 
FIG . 1 , system 200 may include a neural network processor 
210 , which generally corresponds to neural network proces 
sor 130 of controller 120 . 
[ 0034 ] In some examples , neural network processor 210 
may include an external interface 220 for receiving and / or 
transmitting data from or to one or more external resources 
( e . g . , other processing and / or memory resources of control 
ler 110 ) . Among other functions , external interface 220 may 
be used to receive instructions from a CPU , to read the 
model definitions and / or parameters ( e . g . , weights and / or 
biases ) from memory , to access sensor data , to write out 
results of the neural network , and / or the like . In some 
embodiments , external interface 220 may include a direct 
memory access ( DMA ) controller . 
[ 0035 ] In some embodiments , external interface 220 may 
implement one or more communication protocols . For 
example , external interface 220 may interface with a CPU 
( and / or other processors ) of controller 110 using a non 
coherent bus protocol , such as the advanced extensible 
interface ( AXI ) protocol . In another example , external inter 
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face 220 may interface with DRAM ( and / or other memory ) 
of controller 110 using a coherent bus protocol , such as the 
AXI coherency extensions ( ACE ) protocol . It is to be 
understood that these are merely examples , and that external 
interface module 220 may implement a wide variety of 
communication protocols in addition to and / or as an alter 
native to AXI and ACE . 
[ 0036 ] In some examples , neural network processor 210 
may include a local memory 230 that provides local data 
storage for neural network processor 210 . For example , local 
memory 230 may store data associated with the neural 
network , such as the model definition ; the model parameters 
( e . g . , weights and / or biases ) ; input data for the neural 
network ; intermediate results generated by neural network 
processor 210 ( e . g . , the output of a hidden layer of the neural 
network ) ; final results of the neural network ; and / or the like . 
In some embodiments , local memory 230 may store instruc 
tions and / or programs to be executed by neural network 
processor 210 . In some embodiments , local memory 230 
may be implemented using static RAM ( SRAM ) . 
10037 ] In some examples , neural network processor 210 
may include a compute engine 240 . Compute engine 240 
executes instructions to compute the result of the neural 
network for a given set of input data . In some embodiments , 
compute engine 240 may be optimized for neural network 
computations . For example , compute engine 240 may 
include a single - instruction multiple - data processor , a vector 
processor , and / or the like . In some examples , the instruc 
tions executed by compute engine 240 may be floating point 
instructions . 
[ 0038 ] During operation , neural network processor 210 
and / or its constituent modules ( e . g . , external interface 220 , 
local memory 230 , and / or compute engine 240 ) may 
encounter errors that may disrupt the functionality of neural 
network processor 210 , cause the results of neural network 
processor 210 to become corrupted or tainted , and / or the 
like . Accordingly , neural network processor 210 may 
include one or more error detectors 251 - 257 to monitor the 
operation of neural network processor 210 and detect the 
occurrence of errors . In response to detecting an error , error 
detectors 251 - 257 may report the detected error such that an 
appropriate remedial action may be taken . 
10039 ] In some embodiments , error detectors 251 - 257 
may include a response error detector 251 associated with 
external interface 220 . In some embodiments , response error 
detector 251 may report a response error based on status 
information extracted from response messages received via 
external interface 220 . For example , when external interface 
220 issues read and / or write request , external interface 220 
may receive a response packet that includes one or more 
status bits to signify whether an error was encountered 
during fulfillment of the request . In some examples , the 
status bits may be defined in an applicable protocol , such as 
the ACE protocol . For example , the status bits may include 
an n - bit status code , such as a two - bit code where 00 
indicates no error , 01 indicates a slave error , 10 indicates a 
decode error , and 11 is undefined . Accordingly , response 
error detector 251 may determine whether the status code of 
a response packet indicates an error ( e . g . , any status code 
other than 00 ) . 
[ 0040 ] In some embodiments , error detectors 251 - 257 
may include an integrity error detector 252 associated with 
external interface 220 . In some embodiments , integrity error 
detector 252 may verify the integrity of data received via 

external interface 220 and report an integrity error when the 
received data is corrupted . For example , the received data 
may include an error detection code , such as a cyclic 
redundancy check ( CRC ) . Consistent with such examples , 
integrity error detector 252 may verify that the error detec 
tion code matches the received data . The use of an error 
detection code may be particularly beneficial when request 
ing data that persists in memory for a long period of time . 
For example , the model definition and / or the model param 
eters of a neural network may be stored in memory for a 
period of minutes or hours while operating vehicle 100 and 
are therefore prone to stochastic errors ( e . g . , bit flips caused 
by thermal fluctuations ) . In such cases , the verification of an 
error detection code by integrity error detector 252 may 
allow for efficient detection of corrupted data . Conversely , 
real - time sensor data is generally stored in memory for a 
short period of time ( e . g . , less than one second ) , making the 
data less prone to stochastic errors , and therefore may not 
include an error detection code . 
10041 ] In some embodiments , error detectors 251 - 257 
may include a protocol error detector 253 associated with 
external interface 220 . In some embodiments , protocol error 
detector 253 may report a protocol error when an error 
associated with a communication protocol implemented by 
external interface 220 is detected . For example , protocol 
error detector 253 may detect illegal read and / or write 
transactions associated with the AXI protocol ( e . g . , illegal 
burst types , cacheline crossing without wrapping burst type , 
etc . ) when receiving instructions from the CPU . 
[ 0042 ] In some embodiments , error detectors 251 - 257 
may include a parity error detector 254 associated with local 
memory 230 . In some embodiments , parity error detector 
254 may verify the integrity of the data stored in local 
memory 230 and raise a parity error when the stored data is 
identified as being corrupted . In some examples , parity 
check module 242 may maintain one or more parity bits and 
report the parity error when the parity bits do not match the 
stored data . 
[ 0043 ] In some embodiments , error detectors 251 - 257 
may include an instruction error detector 255 associated 
with local memory 230 . In some embodiments , instruction 
error detector 255 may validate instructions stored in local 
memory 230 and raise an instruction error when the stored 
instructions are invalid . For example , instruction error detec 
tor 255 may raise an instruction error when an unrecognized 
instruction is detected ( e . g . , an instruction with an instruc 
tion code that does not correspond to an operation that neural 
network processor 210 is configured to perform ) . In some 
embodiments , instruction error detector 255 may validate 
the instructions at various times during operation , e . g . , while 
the instructions are being written to local memory 230 ( e . g . , 
as they are received via a programming interface of external 
interface 220 , prior to execution of the neural network ) , 
while the instructions are being retrieved from local memory 
230 ( e . g . , as they are executed by compute engine 240 ) , 
and / or at any other suitable time . 
( 0044 ) In some embodiments , error detectors 251 - 257 
may include a computational error detector 256 associated 
with compute engine 240 . In some embodiments , computa 
tional error detector 256 may report errors associated with 
performing computations via compute engine 240 . Illustra 
tive errors that may be encountered by compute engine 240 
during operation may include invalid operations , division by 
zero , overflow , underflow , denormalization , inexact num 
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bers , and / or the like . In some examples , one or more of the 
errors may correspond to floating point exceptions defined 
by the IEEE 754 standard . 
10045 ] In some embodiments , error detectors 251 - 257 
may include a timeout error detector 257 . In some embodi 
ments , timeout error detector 257 may report a timeout error 
when one or more modules and / or tasks performed by neural 
network processor 210 hang or otherwise become unrespon 
sive . For example , timeout error detector 257 may monitor 
certain types of activity in neural network processor 210 , 
such as receiving and / or sending data via external interface 
220 . After a period of inactivity , timeout error detector 257 
may determine that one or more modules and / or tasks 
performed by neural network processor 210 is hanging and 
flag the error . In some examples , timeout error detector 257 
may be implemented using a watchdog timer ( WDT ) . An 
exemplary embodiment of timeout error detector 257 is 
discussed in further detail in FIG . 3 . 
[ 0046 ] It is to be understood that error detectors 251 - 257 
depicted in FIG . 2 are merely examples , and that neural 
network processor 210 may include many other types of 
error detectors . Moreover , although error detectors 251 - 257 
are depicted as being associated with and / or embedded 
within particular modules of neural network processor 210 
( e . g . , external interface 220 , local memory 230 , and / or 
compute engine 240 ) , error detectors 251 - 257 may be 
arranged in various additional and / or alternative configura 
tions . For example , instruction error detector 255 may be 
incorporated into external interface 220 and / or compute 
engine 240 in addition to and / or instead of local memory 
230 . 
10047 ] In some embodiments , neural network processor 
210 may include a neural network controller 270 . In some 
embodiments , neural network controller 270 may maintain 
state information associated with each of the one or more 
neural networks running on neural network processor 210 . 
For example , neural network controller 270 may maintain 
one or more status registers 275 for each neural network . In 
some examples , status registers 275 may keep track of the 
execution state of each neural network using variables such 
as a progress indicator ( e . g . , pending , running , completed , 
etc . ) , an error indicator , an address pointer ( e . g . , a location 
in memory where the current result of a neural network is 
stored ) , and / or the like . 
[ 0048 ] In some examples , neural network controller 270 
may set the level of one or more interrupt pins 280 for each 
neural network . Interrupt pins 280 are coupled to an inter 
rupt handler 290 to enable system 200 to respond to the 
interrupt signals . For example , interrupt pins 280 may 
include a completion pin 282 that is used to signal when a 
neural network has finished a computation and / or the results 
of the neural network have been updated in output buffer 
226 . In some examples , completion pin 282 may be operated 
as an edge - sensitive and / or level - sensitive interrupt . In 
response to detecting an interrupt signal on completion pin 
282 , system 200 may retrieve the updated results of the 
corresponding neural network . 
[ 0049 ] In some embodiments , neural network controller 
270 may centrally manage and / or respond to the errors 
reported by error detectors 251 - 257 . For example , errors 
may be reported to neural network controller 270 using 
machine check architecture ( MCA ) reporting . Consistent 
with such embodiments , status registers 275 may store error 
codes for each neural network , such as 16 - bit MCA error 

codes . In some examples , the error codes may indicate 
whether an error occurred in the respective neural networks 
( e . g . , using an error valid bit ) , and if so , the type of error 
encountered ( e . g . , response error , integrity error , etc . ) . Like 
wise , interrupt pins 280 may include an error pin 284 that is 
used to signal when the neural network encounters an error . 
In some examples , error pin 284 may be operated as an 
edge - sensitive and / or level - sensitive interrupt . In response 
to detecting an interrupt signal on error pin 284 , system 200 
may determine the type of the error by accessing the error 
code via status register 275 and take an appropriate remedial 
action based on the error type . 
[ 0050 ] In some embodiments , completion pin 282 and 
error pin 284 may be operated asynchronously . That is , an 
error interrupt signal may be transmitted on error pin 284 
without waiting for a corresponding completion interrupt 
signal to be transmitted on completion pin 282 . Conse 
quently , interrupt handler 290 has the option of responding 
immediately to the error interrupt handler ( e . g . , by termi 
nating the neural network ) or waiting for the pending 
computation to complete despite the error . In some embodi 
ments , the decision of whether to immediately terminate the 
neural network or wait for completion may depend on the 
type of error . 
[ 0051 ] As discussed above , neural network processor 210 
may identify and flag a number of types of errors that occur 
during the processing of a neural network . In some 
examples , the errors may generally be categorized as pro 
gram errors ( e . g . , protocol errors and / or instruction errors 
detected by error detector 253 and / or 255 , respectively ) , data 
errors ( e . g . , response errors , integrity errors , parity errors , 
and / or computational errors detected by error detectors 251 , 
252 , 254 , and 256 , respectively ) , and / or timeout errors ( e . g . , 
timeout errors detected by timeout error detector 257 ) . 
[ 0052 ] For some types of errors , execution of the neural 
network may be terminated immediately upon error detec 
tion . For example , when a program error ( e . g . , a protocol 
error and / or instruction error ) is encountered , the neural 
network may be restarted immediately upon detection of the 
error in order to reload the program . In another example , 
when a timeout error is encountered , neural network pro 
cessor 210 may be rebooted immediately upon detection of 
the error in order to unfreeze any modules that are hanging . 
[ 0053 ] For other types of errors , the next result of the 
neural network computation may be deemed tainted or 
corrupted , but the pending computation may still be allowed 
to proceed . For example , when a data error ( e . g . , a response 
error , integrity error , parity error , and / or computational 
error ) is encountered , the pending computation that is based 
on the erroneous data may be allowed to proceed without 
terminating execution of the neural network and / or reboot 
ing neural network processor 210 . However , system 200 
may be instructed to ignore or skip the result of the com 
putation . Skipping tainted results generated by the neural 
network without restarting the neural network serves the 
dual purpose of avoiding misplaced reliance on tainted data 
while also avoiding the disruption associated with restarting 
the neural network entirely . For example , in self - driving 
vehicle applications , the neural network may process tens or 
hundreds of image frames per second . In this context , 
skipping frames on occasion may not be regarded as prob 
lematic and / or may not have a significant impact on self 
driving performance . At the same time , this approach avoids 
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the risk associated with relying on erroneous data because 
tainted results are identified as such and thrown out . 
[ 0054 ] In some embodiments , the response to certain type 
of errors may depend on the design - cycle stage of system 
200 . For example , during the bring - up stage , when a timeout 
error is encountered , neural network processor 210 may 
transition to a debug mode . As discussed in greater detail 
below with reference to FIG . 4 , in the debug mode , the 
execution of the neural network processor may be paused , 
allowing access to detailed state information ( e . g . , register 
states ) of neural network processor 210 and / or allowing 
single - step execution of instructions . Entering the debug 
mode may facilitate rapid and / or accurate identification of 
the cause of the timeout error by providing access to the state 
of neural network processor 210 at the time that the error 
occurred . On the other hand , entering the debug mode may 
be unsuitable for the production stage ; the preferred behav 
ior in response to a timeout error in the production stage may 
be to attempt to restore normal operation of neural network 
processor 210 as quickly as possible . Accordingly , during 
the production stage , when a timeout error is encountered , 
the neural network may be terminated and / or neural network 
processor 210 may be rebooted immediately . 
[ 0055 ] Although a single set of status registers 275 and 
interrupt pins 280 are shown for simplicity , it is to be 
understood that neural network processor 210 may include 
multiple sets of status registers and interrupt pins . In par 
ticular , the number of sets of status registers and interrupt 
pins may correspond to the number of neural networks that 
neural network processor 210 is configured to process 
serially and / or in parallel . In an illustrative embodiment , 
neural network processor 210 may include 32 sets of status 
registers and interrupt pins , such that neural network pro 
cessor 210 is able to process up to 32 neural networks at a 
time . 

zero , an error is raised . Additionally or alternately , primary 
timers 311 - 319 may count up from zero until the threshold 
number is reached . 
[ 0059 ] In some embodiments , timeout detection module 
300 may additionally include one or more composite timers , 
such as a layer timer 320 and / or a neural network timer 330 . 
In some embodiments , the composite timers may monitor 
aggregate activity in a plurality of blocks of neural network 
processor 210 . For example , the composite timers may 
concurrently monitor the elapsed time since external inter 
face 200 has received data , the elapsed time since external 
interface 200 has transmitted data , and / or the elapsed time 
since compute engine 240 has been active . 
[ 0060 ] In some examples , layer timer 320 may time out 
when the time taken to process a layer of the neural network 
has exceeded a predetermined amount of time . Consistent 
with such examples , layer timer 320 may monitor a sum of 
activities pertaining to executing a layer in a neural network , 
which may include , but is not limited to , memory read , 
memory write , and compute engine activity . In some 
examples , the threshold time for layer timer 320 may be 
greater than the threshold time for each of primary timers 
311 - 319 . 
[ 0061 ] In some examples , neural network timer 330 may 
time out when the time taken to process the entire neural 
network has exceeded a predetermined amount of time . 
Consistent with such examples , neural network timer 330 
may monitor a sum of activities pertaining to executing a 
neural network , which may include , but is not limited to , 
memory read , memory write , and compute engine activity . 
In some examples , the threshold time for neural network 
timer 330 may be greater than the threshold time for primary 
timers 311 - 319 and / or layer timer 320 . For example , the 
threshold time for neural network timer 330 may be one 
billion clock cycles . 
[ 0062 ] In some examples , an aggregator 340 may provide 
an aggregate timeout error signal based on the outputs of 
primary timers 311 - 319 and / or the composite timers ( e . g . , 
layout timer 320 and / or neural network timer 330 ) . Accord 
ing to some embodiments , the aggregate timeout error signal 
may indicate an error when any of primary timers 311 - 319 , 
layer timer 320 , and / or neural network timer 330 time out . 
That is , timeout error detector 300 may report a timeout 
error when individual modules of neural network processor 
210 hang ( resulting in one or more of primary timers 
311 - 319 timing out ) , when a layer of the neural network 
hangs ( resulting in layer timer 320 timing out ) , and / or when 
the neural network hangs ( resulting in network timer 330 
timing out ) . 
[ 0063 ] FIG . 4 is a simplified diagram of a neural network 
processor 400 with a debug mode according to some 
embodiments . According to some embodiments consistent 
with FIGS . 1 - 3 , neural network processor 400 may be used 
to implement neural network processor 210 of system 200 . 
FIG . 4 illustrates the ability to access hidden registers of 
neural network processor 400 when debugging processor 
400 during bring - up . In some examples , during bring - up , 
neural network processor 400 may transition from an oper 
ating mode ( e . g . , normal execution of neural networks ) to 
the debug mode automatically in response to an error , such 
as a timeout error . 
[ 0064 ] Neural network processor 400 includes a plurality 
of registers that store state information and / or various other 
types information ( e . g . , instructions , data , address pointers , 

[ 0056 ] FIG . 3 is a simplified diagram of a timeout error 
detector 300 according to some embodiments . According to 
some embodiments consistent with FIGS . 1 - 2 , timeout error 
detector 300 may be used to implement timeout error 
detector 257 of neural network processor 210 . 
[ 0057 ] As depicted in FIG . 3 , timeout error detector 300 
includes one or more primary timers 311 - 319 . In some 
examples , primary timers 311 - 319 may monitor idle cycles 
in one or more blocks or modules of neural network pro 
cessor 210 . For example , primary timer 311 may monitor the 
elapsed time since external interface 220 has received data 
( e . g . , read data from memory ) . In another example , primary 
timer 312 may monitor the elapsed time since external 
interface 220 has transmitted data ( e . g . , written data to 
memory ) . In a further example , primary timer 319 may 
monitor the elapsed time since compute engine 240 has been 
active ( e . g . , executed instructions ) . 
[ 0058 ] In some embodiments , the elapsed time may be 
determined by counting clock cycles since activity was last 
detected . For example , primary timers 311 - 319 may count 
down from a threshold number of clock cycles . In some 
examples , each of the blocks being monitored may issue a 
signal indicating the occurrence of an activity ( e . g . , a packet 
being read from and / or written to the memory , an instruction 
being executed by the compute engine , and / or the like ) . 
When a signal is received from the block being monitored , 
the count resets to the threshold value . If the count reaches 
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etc . ) associated with neural network processor 400 . In some 
examples , the plurality of registers may include one or more 
top level registers 412 that may be easily and / or directly 
accessed via an external interface ( e . g . , via external interface 
220 using the AXI bus protocol ) for debugging purposes . 
Moreover , the plurality of registers includes one or more 
deep registers 414 that are not easily and / or directly 
accessed by external means . For example , the data stored in 
deep registers 414 may be accessed by migrating the data 
into top level registers 412 via multiplexers 420 . Accord 
ingly , the data stored in deep registers 414 may take a 
substantial amount of time to retrieve . 
[ 0065 ] Conventionally , when a processor encounters an 
error , such as a timeout error , the running processes of the 
processor are terminated and / or rebooted without providing 
access to the state information stored in the processor ' s 
registers . Alternately , a snapshot may be saved that captures 
a subset of the processor ' s state information at the moment 
of the timeout error . For example , the snapshot may include 
data from one or more top level registers , such as top level 
registers 412 . However , the snapshot generally does not 
include data from deep registers , such as deep registers 414 . 
In particular , generating a comprehensive snapshot of the 
deep registers is likely to take a long time and be inefficient , 
as much of the information stored in the deep registers 
would be irrelevant to the error at hand . Nevertheless , the 
ability to selectively access relevant data from the deep 
registers would be desirable to accelerate the process of 
debugging the processor . 
10066 ] To address these issues , the execution of neural 
networks by neural network processor 400 is paused in the 
debug mode , such that the data in many registers of neural 
network processor 400 no longer changes values as in the 
operating mode . In some embodiments , neural network 
processor 400 otherwise remains capable of responding to 
external stimuli and / or requests in the debug mode . Conse 
quently , the engineer tasked with debugging the error retains 
access to data from the registers , including top level registers 
412 and deep registers 414 . For example , the engineer can 
control multiplexers 420 to manually find information rel 
evant to the error stored in deep registers 414 . Moreover , as 
depicted in FIG . 4 , the engineer may have the ability to run 
single - step instructions on neural network processor 400 to 
determine how incremental operations impact the state of 
neural network processor 400 . These capabilities may assist 
the engineer in determining the root cause of the error . 
Accordingly , the process of debugging neural network pro 
cessor 400 may be substantially accelerated relative to 
conventional approaches . 
[ 0067 ] FIG . 5 is a simplified diagram of a method 500 for 
error handling in a neural network processor according to 
some embodiments . According to some embodiments con 
sistent with FIGS . 1 - 4 , method 500 may be implemented by 
neural network processors 120 , 220 , and / or 400 . 
[ 0068 ] At a process 510 , an error report is received . For 
example , the error report may be received from one or more 
error detectors of the neural network processors , such as 
error detectors 251 - 257 , in response to detecting an error . 
Illustrative examples of error reports include response 
errors , integrity errors , protocol errors , parity errors , instruc 
tion errors , computation errors , and / or timeout errors , as 
discussed previously with respect to FIG . 2 . In some 
examples , the error report may correspond to a machine 
check architecture ( MCA ) error report . 

[ 0069 ] At a process 520 , a type of the error is determined . 
In some embodiments , determining the type of the error may 
include determining whether the error corresponds to a 
program error , a data error , and / or a timeout error . For 
example , program errors may include protocol errors and / or 
instruction errors ; data errors may include response errors , 
integrity errors , parity errors , and / or computation errors ; and 
timeout errors may include errors raised by timeout error 
detector 257 . When a program error is encountered , method 
500 may proceed to processes 530 and 540 for terminating 
execution of the neural network and identifying a pending 
result of the neural network as corrupt , respectively . When 
a data error is encountered , method 500 may proceed to 
process 540 for identifying a pending result of the neural 
network as corrupt without terminating execution of the 
neural network at process 530 . When a timeout error is 
encountered , method 500 may proceed to either a process 
550 for transitioning to a debug state or a process 560 for 
terminating execution of the neural network and resetting 
the neural network processor , depending on whether the 
neural network processor is operating in a bring - up mode or 
a production mode . 
[ 0070 ] At a process 530 , execution of the neural network 
is terminated and / or paused immediately , without resetting 
the neural network processor . In some embodiments , process 
530 may be performed when a program error is encountered 
because the neural network processor may not be able to 
continue executing the neural network when the instructions 
to be executed are defective ( e . g . , when the program instruc 
tions include unrecognized or otherwise invalid commands 
and / or instruction codes ) . Accordingly , the execution of the 
neural network may be immediately halted such that the 
instructions may be reloaded and / or otherwise corrected . 
[ 0071 ] At a process 540 , a pending result of the neural 
network is identified as being corrupt . In some embodi 
ments , the pending result may be identified as corrupt by 
changing the level of an error interrupt pin of the neural 
network processor , such as error interrupt pin 284 . Changing 
the level of the error interrupt pin may cause an external 
system , such as interrupt handler 290 , to access error infor 
mation ( e . g . , by retrieving error information from the status 
registers of the neural network processor ) and determine an 
appropriate remedial action . Examples of remedial actions 
that may be taken in response to the pending result of the 
neural network being identified as corrupt may include 
retrying the pending neural network computation from 
scratch and / or from a previous checkpoint ; dropping the 
pending results entirely and moving on to the next compu 
tation ; rebooting the neural network processor , and / or the 
like . 

[ 0072 ] At a process 550 , when the neural network proces 
sor encounters a timeout error during bring - up , the neural 
network processor transitions to a debug mode . As described 
previously with respect to FIG . 4 , when the neural network 
processor transitions to the debug mode , the execution of the 
neural network processor is paused , such that the register 
values at the time of the timeout error stop changing . In this 
regard , an engineer may debug the timeout error by inspect 
ing the register values and / or through single - step execution 
of instructions . 
[ 0073 ] . At a process 560 , when the neural network proces 
sor encounters a timeout error in production , execution of 
the neural network is terminated and the neural network 
processor is rebooted . Unlike the bring - up case , it is desir 
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able to get the neural network processor back up and running 
as quickly as possible in response to a timeout error . 
Moreover , there are generally no engineering resources 
available to debug the neural network processor in produc 
tion . Accordingly , rebooting the neural network processor to 
eliminate the hanging condition may be a preferred response 
to the timeout error in production . 
[ 0074 ] Some examples of processors , such as neural net 
work processors 120 , 220 , and / or 400 , may include non 
transient , tangible , machine readable media that include 
executable code that when run by one or more processors 
( e . g . , processors 120 , 220 , and / or 400 ) may cause the one or 
more processors to perform the processes of method 500 . 
Some common forms of machine readable media that may 
include the processes of method 500 are , for example , floppy 
disk , flexible disk , hard disk , magnetic tape , any other 
magnetic medium , CD - ROM , any other optical medium , 
punch cards , paper tape , any other physical medium with 
patterns of holes , RAM , PROM , EPROM , FLASH 
EPROM , any other memory chip or cartridge , and / or any 
other medium from which a processor or computer is 
adapted to read . 
[ 0075 ] Although illustrative embodiments have been 
shown and described , a wide range of modification , change 
and substitution is contemplated in the foregoing disclosure 
and in some instances , some features of the embodiments 
may be employed without a corresponding use of other 
features . One of ordinary skill in the art would recognize 
many variations , alternatives , and modifications . Thus , the 
scope of the invention should be limited only by the fol 
lowing claims , and it is appropriate that the claims be 
construed broadly and in a manner consistent with the scope 
of the embodiments disclosed herein . 
What is claimed is : 
1 . A neural network processor for executing a neural 

network associated with use of a vehicle , the neural network 
processor comprising : 

an error detector configured to detect a data error asso 
ciated with execution of the neural network ; and 

a neural network controller configured to receive a report 
of the data error from the error detector , wherein , in 
response to receiving the report , the neural network 
controller is further configured to signal that a pending 
result of the neural network is tainted without termi 
nating execution of the neural network . 

2 . The neural network processor of claim 1 , wherein the 
data error includes at least one of a response error , an 
integrity error , a parity error , or a computation error . 

3 . The neural network processor of claim 1 , further 
comprising an error interrupt pin for communication with an 
interrupt controller , wherein the neural network controller 
signals to the interrupt controller that the pending result of 
the neural network is tainted via the error interrupt pin . 

4 . The neural network processor of claim 1 , wherein the 
neural network controller further includes a status register 
that stores information associated with the data error . 

5 . The neural network processor of claim 1 , further 
comprising a second error detector configured to detect a 
program error associated with the neural network . 

6 . The neural network processor of claim 5 , wherein the 
neural network controller is further configured to receive a 
second report of the program error from the second error 
detector and wherein , in response to receiving the second 
report , the neural network controller is further configured to 

terminate execution of the neural network and signal that the 
pending result of the neural network is tainted . 

7 . The neural network of claim 5 , wherein the program 
error includes at least one of a protocol error or an instruc 
tion error . 

8 . The neural network processor of claim 1 , further 
comprising a timeout error detector configured to detect a 
timeout error associated with the neural network . 

9 . The neural network processor of claim 8 , wherein the 
neural network controller is further configured to receive a 
third report of the timeout error from the timeout error 
detector and wherein , in response to receiving the third 
report , the neural network controller is further configured to 
reboot the neural network processor . 

10 . The neural network processor of claim 8 , wherein the 
timeout error detector comprises a plurality of primary 
timers that monitor idle cycles in a corresponding plurality 
of blocks of the neural network processor , and one or more 
composite timers that monitor aggregate activity in the 
plurality of blocks of the neural network processor . 

11 . The neural network processor of claim 10 , wherein the 
one or more composite timers includes a layer timer that 
times out when a time taken to process a layer of the neural 
network exceeds a predetermined threshold time . 

12 . The neural network processor of claim 10 , wherein the 
one or more derivative timers includes a neural network 
timer that times out when a time taken to process the neural 
network exceeds a predetermined threshold time . 

13 . The neural network processor of claim 1 , wherein the 
neural network is configured to identify features in stream of 
images captured by a camera of the vehicle . 

14 . The neural network processor of claim 1 , wherein the 
neural network processor concurrently executes one or more 
additional neural networks , and wherein the neural network 
controller separately manages errors associated with each of 
the one or more additional neural networks . 

15 . A system comprising : 
a neural network processor for executing a neural network 

associated with autonomous operation of a vehicle ; and 
an interrupt controller coupled to the neural network 

processor , wherein the interrupt controller is configured 
to : 
receive an error signal via an error interrupt pin of the 

neural network processor ; 
access error information via one or more status regis 

ters of the neural network processor , the error infor 
mation indicating a type of error encountered by the 
neural network processor ; and 

when the type of the error corresponds to a data error , 
identify a pending result of the neural network 
processor as corrupt . 

16 . The system of claim 15 , wherein the neural network 
processor is further configured to terminate execution of the 
neural network when the type of the error corresponds to a 
program error . 

17 . The system of claim 15 , wherein , during bring - up of 
the neural network processor , the neural network processor 
is further configured to transition to a debug mode when the 
type of the error corresponds to a timeout error . 

18 . The system of claim 17 , wherein , in the debug mode , 
the neural network processor is configured to provide access 
to one or more deep registers and to perform single - step 
instructions . 
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19 . A method for handling errors in a vehicle neural 
network processor , the method comprising : 

receiving an error report based on an error encountered by 
the vehicle neural network processor during operation 
of a vehicle ; 

determining a type of the error based on the error report ; 
and 

in response to determining that the type of the error 
corresponds to a data error , signaling that a pending 
result of the vehicle neural network processor is corrupt 
while allowing operation of the vehicle neural network 
processor to proceed . 

20 . The method of claim 19 , wherein the data error is 
raised in response to the vehicle neural network processor 
receiving invalid input data . 


