
US 20190205738A1
(19) United States
(12) Patent Application Publication (10) Pub . No . : US 2019 / 0205738 A1

BANNON et al . (43) Pub . Date : Jul . 4 , 2019

(54) SYSTEMS AND METHODS FOR
HARDWARE - BASED POOLING

(71) Applicant : Tesla , Inc . , Palo Alto , CA (US)

G06K 9 / 34 (2006 . 01)
G06K 9 / 46 (2006 . 01)

(52) U . S . CI .
CPC GO6N 37063 (2013 . 01) ; G06K 9 / 66

(2013 . 01) ; G06K 9 / 4628 (2013 . 01) ; G06K
9 / 342 (2013 . 01) ; G06F 15 / 18 (2013 . 01) (72) Inventors : Peter Joseph BANNON , Woodside ,

CA (US) ; Kevin Altair Hurd ,
Redwood City , CA (US)

(73) Assignee : Tesla , Inc . , Palo Alto , CA (US)
(21) Appl . No . : 15 / 862 , 369
(22) Filed : Jan . 4 , 2018

(57) ABSTRACT
Described herein are systems and methods that utilize a
novel hardware - based pooling architecture to process the
output of a convolution engine representing an output chan
nel of a convolution layer in a convolutional neural network
(CNN) . The pooling system converts the output into a set of
arrays and aligns them according to a pooling operation to
generate a pooling result . In certain embodiments , this is
accomplished by using an aligner that aligns , e . g . , over a
number of arithmetic cycles , an array of data in the output
into rows and shifts the rows relative to each other . A pooler
applies a pooling operation to a combination of a subset of
data from each row to generate the pooling result .

(51)
Publication Classification

Int . Cl .
GOON 3 / 063 (2006 . 01)
GO6K 9 / 66 (2006 . 01)
G06F 15 / 18 (2006 . 01)

200

202
INPUT

WRITE
ALIGNER

204
ROW ALIGNER

206

POOLING ARRAY
208

POOLER
210

POOLER
210

POOLER
210

AVERAGE
UNIT
212

AVERAGE
UNIT
212

AVERAGE
UNIT
212

SUM
214

SUM
214

SUM
214

DIVISCALE
216

DIVISCALE
216

DIVISCALE
216

OUTPUT
230

Patent Application Publication Jul . 4 , 2019 Sheet 1 of 5 US 2019 / 0205738 A1

100

104 :

SRAM
102

DATA & WEIGHT
FORMATTERS

110
??

106 Viive 108

VANNY
CONTROL
LOGIC
150

124 122

POOLING UNIT
140

SIMD UNIT
130

MATRIX
PROCESSOR

120

FIGURE 1

Patent Application Publication Jul . 4 , 2019 Sheet 2 of 5 US 2019 / 0205738 A1

200

202
INPUT

MY

WRITE
ALIGNER

204

ROW ALIGNER
206 FOR ALIGNER

POOLING ARRAY
208

nnnnnnnnnnn

POOLER
210

POOLER
210

POOLER
210

AVERAGE
UNIT

AVERAGE
UNIT
212 MAANAAAAAAAAAAAAAAAAAAAAAA

AVERAGE
UNIT
212 212

SUM
214

SUM
214

SUM
214 ttt DIVISCALE

216 AAAAAAAAAAAAAAAAAA DIVISCALE
216

DIVISCALE
216

LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL AAALLLLLLLLLLLLLLLLLLLLLLLLLLL

OUTPUT
230

FIGURE 2

Patent Application Publication Jul . 4 , 2019 Sheet 3 of 5 US 2019 / 0205738 A1

300

302 RECEIVE FROM A CONVOLUTION ENGINE AN ARRAY OF DATA
REPRESENTING AN OUTPUT CHANNEL OF A CONVOLUTION

LAYER IN A CNN (e . g . , every N cycles)

304 CONVERT THE ARRAY OF DATA INTO A SET OF ARRAYS THAT
EACH ALIGNS ACCORDING TO A POOLING OPERATION WHICH
USES DATA FROM AT LEAST TWO OF THE SET OF ARRAYS

306 - APPLY THE POOLING OPERATION TO AT LEAST TWO OF THE
SET OF ARRAYS TO GENERATE POOLING RESULTS (e . g . , one

result per cycle)

308 OUTPUT THE POOLING RESULTS INTO A MEMORY DEVICE (e . g . ,
one row per cycle)

FIGURE 3

Patent Application Publication Jul . 4 , 2019 Sheet 4 of 5 US 2019 / 0205738 A1

400

402 - RECEIVE , AT A HARDWARE - BASED POOLING ENGINE , A SET
OF ARRAYS THAT EACH HAVE A PREDEFINED RELATIONSHIP

WITH EACH OTHER
??? ???????????????

404 -
USING THE HARDWARE - BASED POOLING ENGINE , APPLY ,

ACCORDING TO A STRIDE VALUE , A POOLING OPERATION TO
DATA IN AT LEAST TWO OF THE SET OF ARRAYS TO COMPUTE

A POOLING RESULT WITHOUT STORING CONVOLUTION
RESULT IN MEMORY

406 OUTPUT THE POOLING RESULT AS A ROW OF DATA POINTS
THAT EACH REPRESENTS A NEURON IN A LAYER OF THE CNN

FIGURE 4

Patent Application Publication Jul . 4 , 2019 Sheet 5 of 5 US 2019 / 0205738 A1

500

OUTPUT CHANNEL

MATRIX PROCESSOR
502

OUTPUT CHANNEL 504

518

506

CYCLE O , Y = 0 +

- 508

CYCLE 1 , Y = 1
510

CYCLE 2 , Y = 2

p . 512

CYCLE 3 , Y = 3

MAX 514
AVG

FIGURE 5

US 2019 / 0205738 A1 Jul . 4 , 2019

SYSTEMS AND METHODS FOR
HARDWARE - BASED POOLING

A . TECHNICAL FIELD
[0001] The present disclosure relates generally to systems
and methods for improving utilization of computing
resources , such as computational power and storage require
ments . More particularly , the present disclosure is related to
systems and methods for improving efficiency of arithmetic
processes in computer vision applications that use convo
lutional neural network (CNN) architectures to generate
convolutional and pooling data .

on the type of pooling function (e . g . , average or max) that
is used in the pooled area . The size and location of the
pooling window depends on the pooling stride (i . e . , interval
or step size) and the location of the output pixel . Oftentimes ,
the last pooling layer is followed by the final output layer
(e . g . , a fully connected layer with a soft - max nonlinearity)
of the CNN architecture that outputs the final prediction ,
e . g . , as an estimate of a conditional probability , for each
particular class .
[0006] While great progress has been achieved in improv
ing the performance of convolutional layers by sharing of
weights and improving arithmetic logic unit utilization ,
pooling layers , which are similarly computationally inten
sive , have been neglected mainly due to constraints inherent
to existing neural network architectures .
[0007] Accordingly , it would be desirable to have systems
and methods that improve the performance of pooling layers
in neural networks to further increase the utilization end
performance of available computational resources to reduce
overall computational cost .

B . BACKGROUND
[0002] Neural network - based image classifiers are achiev
ing significant improvements in automatically learning com
plex features for classification and object recognition . For
example , a Convolutional Neural Network (CNN) model
may be used to automatically determine whether an image
can be categorized as comprising a person or animal . The
CNN applies a number of hierarchical network layers and
sub - layers to an input image when making a determination
or prediction . One characteristic of CNNs is that each
network layer serves as an output of a previous layer ,
typically starting at a first convolutional layer and ending
with one or more final layers , e . g . , a fully connected layer
that includes nodes whose activation values deliver scores
that indicate a likelihood that the input image can indeed be
classified as comprising a certain object .
[0003] A convolution layer may use several filters known
as kernels or activation functions that apply to the pixels of
a convolution window of an image a set of weights . The
weights have been learned by the CNN during a training
phase to generate an activation value associated with that
window . For each filter , the convolution layer may have , for
each pixel , one node , i . e . , neuron , that outputs an activation
value that is calculated based on the set of weights . The
activation value for the convolution window identifies a
feature or characteristic , such as an edge that can be used to
identify the feature at other locations within the image . Since
all nodes for a filter can share the same set of weights ,
reusing weights is a common technique to increase utiliza
tion of both storage space and computation time .
[0004] Among the most important types of layers of a
CNN is the pooling layer — a basic , independent building
block that is typically placed after a convolutional layer . As
applied to images , a pooling layer allows the network to
determine a feature map and learn a set of features for the
image . Pooling is viewed as a form of nonlinear sub
sampling or down - sampling that uses a nonlinear function ,
such as max - pooling or average - pooling , to reduce the
number of neurons when progressing from layer to layer
through the network ; thereby , reducing the amount of com
putation and further increasing computational performance .
[0005] Pooling generally involves sliding a pooling win
dow , e . g . , a two - dimensional square of multiple pixels in
width and multiple pixels in height , stepwise across small ,
non - overlapping areas (i . e . , receptive field) of the output of
a preceding convolution layer . Aggregating the values of the
group of neurons in that area provides single output values
(e . g . , integers) for each group in a local neighborhood . These
output values assigned to each group are passed to a sub -
sequent layer without performing a convolution and depend

BRIEF DESCRIPTION OF THE DRAWINGS
[0008] References will be made to embodiments of the
invention , examples of which may be illustrated in the
accompanying figures . These figures are intended to be
illustrative , not limiting . Although the invention is generally
described in the context of these embodiments , it should be
understood that it is not intended to limit the scope of the
invention to these particular embodiments .
[0009] FIG . 1 is an exemplary block diagram of a system
that uses a pooling unit for performing pooling operations
according to various embodiments of the present disclosure .
[0010] . FIG . 2 is an exemplary block diagram of a pooling
unit architecture according to various embodiments of the
present disclosure .
[0011] FIG . 3 is a flowchart of an illustrative process for
using a pooling system shown in FIG . 1 .
[0012] . FIG . 4 is a flowchart of an illustrative process for
using the pooling unit architecture shown in FIG . 2 .
[0013] FIG . 5 is a flowchart of an illustrative process for
performing pooling operations according to various embodi
ments of the present disclosure .

DETAILED DESCRIPTION OF EMBODIMENTS
[0014] In the following description , for purposes of expla
nation , specific details are set forth in order to provide an
understanding of the invention . It will be apparent , however ,
to one skilled in the art that the invention can be practiced
without these details . Furthermore , one skilled in the art will
recognize that embodiments of the present invention ,
described below , may be implemented in a variety of ways ,
such as a process , an apparatus , a system , a device , or a
method on a tangible computer - readable medium .
[0015] Components , or modules , shown in diagrams are
illustrative of exemplary embodiments of the invention and
are meant to avoid obscuring the invention . It shall also be
understood that throughout this discussion that components
may be described as separate functional units , which may
comprise sub - units , but those skilled in the art will recognize
that various components , or portions thereof , may be divided
into separate components or may be integrated together ,
including integrated within a single system or component . It
should be noted that functions or operations discussed herein

US 2019 / 0205738 A1 Jul . 4 , 2019

may be implemented as components . Components may be
implemented in software , hardware , or a combination
thereof .
[0016 Furthermore , connections between components or
systems within the figures are not intended to be limited to
direct connections . Rather , data between these components
may be modified , re - formatted , or otherwise changed by
intermediary components . Also , additional or fewer connec
tions may be used . It shall also be noted that the terms
" coupled , " " connected , ” or “ communicatively coupled ”
shall be understood to include direct connections , indirect
connections through one or more intermediary devices , and
wireless connections .
[0017] Reference in the specification to “ one embodi
ment , " " preferred embodiment , " " an embodiment , ” or
" embodiments ” means that a particular feature , structure ,
characteristic , or function described in connection with the
embodiment is included in at least one embodiment of the
invention and may be in more than one embodiment . Also ,
the appearances of the above - noted phrases in various places
in the specification are not necessarily all referring to the
same embodiment or embodiments .
[0018] The use of certain terms in various places in the
specification is for illustration and should not be construed
as limiting . A service , function , or resource is not limited to
a single service , function , or resource ; usage of these terms
may refer to a grouping of related services , functions , or
resources , which may be distributed or aggregated . Further
more , the use of memory , database , information base , data
store , tables , hardware , and the like may be used herein to
refer to system component or components into which infor
mation may be entered or otherwise recorded .
[0019] . Furthermore , it shall be noted that : (1) certain steps
may optionally be performed ; (2) steps may not be limited
to the specific order set forth herein ; (3) certain steps may be
performed in different orders ; and (4) certain steps may be
done concurrently .
[0020] FIG . 1 is an exemplary block diagram of a system
that uses a pooling unit for performing pooling operations
according to various embodiments of the present disclosure .
System 100 comprises SRAM 102 , data / weight formatter
110 , matrix processor 120 , post - processing unit 130 , pooling
unit 140 , control logic 150 . It is understood that system 100
may comprise additional circuits and sub - circuits , such as
logic circuitry and / or control circuitry , caches , local buffers ,
comparators , state machines , additional post processing
units , and auxiliary devices that perform management func
tions .
[0021] In embodiments , any component in system 100
may be partially or entirely controlled by control logic 150
that may monitor the status and operations of system 100 ,
e . g . , when performing an operation such as a convolution or
other mathematical calculation , and calculate locations from
which to retrieve data that will be used in a subsequent step
of the operation . Similarly , control logic 150 may manage
other components , e . g . , components that are not shown in
FIG . 1 and / or outside of system 100 .
[0022] In embodiments , SRAM 102 stores and makes
accessible input image data , e . g . , in a data input matrix and
a weight input matrix 104 . One skilled in the art will
recognize that other types of storage devices may be used .
[0023] In embodiments , based on the weight input matrix
and data input matrix 104 , data / weight formatter 110 pro -
duces two outputs 108 , e . g . , each 96 - columns wide , for

matrix processor 120 , which may process a very large
number of elements of a matrix in parallel to efficiently map
data into a matrix operation . Data / weight formatter 110 may
be implemented as any number of in - line formatters that
convert , e . g . , data input matrices and weight input matrices
104 into a suitable format for further processing by matrix
processor 120 , e . g . , according to specific hardware require
ments of matrix processor 120 . In embodiments , formatter
110 converts two - dimensional or three - dimensional matrices
into a single vector or string that may be represented by a
row or column before making the so linearized or vectorized
data available as input 108 to matrix processor 120 . As a
result , matrix processor 120 can be efficiently utilized to
execute a matrix multiply operation as part of a convolution
computation in system 100 to generate output array 122 that
then may be reassembled , e . g . , into an image .
[0024] A neural network model using the embodiments of
the present disclosure may comprise a pooling network that
uses max - pooling layers , averaging pooling layers , and other
neural network layers . The pooling network may be fol
lowed or preceded by , e . g . , (by a processing module that
uses a fully - connected layer and) , in embodiments , an
activation layer that uses a known function , such as a
non - linear function , e . g . , a Rectified Linear Unit (ReLU) ,
logistic sigmoid function , and the like .
[0025] In embodiments , matrix processor 120 performs a
convolution operation by applying individual filters (e . g . ,
weights) to input image data to detect small features within
an input image . By analyzing a sequence of different fea
tures in a different order , macro features may so be identified
in the input image . Matrix processor 120 may use a different
set of weights for each input channel , as each input channel
may contain a different set of information , and each weight
matrix may be used detect a different feature . In embodi
ments , matrix processor 120 multiplies a rectangular input
matrix with a rectangular weight matrix to obtain partial dot
products that may then be summed to generate an accumu
lated dot product , i . e . , an integer , which represents an output
pixel in an output image . In embodiments , output array 122
may correspond to the dot product of two matrices 108 that
have been processed by formatter 110 .
[0026] In embodiments , matrix processor 120 may per
form convolution operations that convolve an input with a
filter to generate output 122 by converting a convolution
operation into a matrix multiplication (e . g . , a 96x96 matrix
multiplication) . Matrix processor 120 may comprise cir
cuitry , such as arithmetic logic units , registers , encoders and
may be implemented as having an arbitrary number of
columns and rows to perform mathematical accelerated
operations across a large set of data and weights . These
large - scale operations may be timed according to the spe
cific hardware requirements of matrix processor 120 to
accelerate convolution operations , e . g . , by reducing redun
dant operations within system 100 and by implementing
hardware specific logic .
[0027] In embodiments , matrix processor 120 outputs 122
a linearized vector or array representing an output channel
that may be stored in storage within post - processing unit
130 . In embodiments , pooling unit 140 operates on a single
output channel of matrix processor 120 , such that output 122
or post - processed output 124 is an array that may otherwise
not conveniently map into a matrix operation . Therefore , in

US 2019 / 0205738 A1 Jul . 4 , 2019

embodiments , output array 122 may be reformatted into a
suitable format for pooling unit 140 to increase the efficiency
of system 100 .
[0028] In contrast , conventional implementations that
employ a vector engine that performs vector operations on
a stored convolution would lead to rather complex and
inefficient pooling operations the output of a highly effi
ciency matrix processor , such as matrix processor 120 , in
part , because some values in output array 122 may be
adjacent while others may not . In short , a pooling algorithm
following a convolution operation by matrix processor 120
would have to process a combination of values in output
array 122 that are not presented in a convenient shape or
format for common pooling methods . Therefore , in embodi
ments , output array 122 is reformatted in order to allow for
the application of improved pooling methods to a high
efficiency matrix processor 120 .
[0029] To achieve this , in embodiments , hardware pooling
unit 140 , in response to receiving output array 122 , e . g . , as
processed by post - processing unit 130 , reformats the
received data into a grid format , such that some elements of
output array 122 may be aligned in a vertical direction and
others may be aligned in a horizontal direction , such that
pooling can be directly applied without the need to perform
cumbersome , computational - intensive intermediate steps
and data storage operations . In embodiments , formatter 110
may reformat different shapes of input matrix data into
columns and rows suitable for matrix processor 120 . In
embodiments , formatting may be performed dynamically to
accommodate processing of matrices that have differing
input sizes .
[0030] In embodiments , pooling unit 140 applies a pooling
function , e . g . , average pooling and max pooling , to the
reformatted data in order to generate and output pooled data
106 that may then be written and stored in SRAM 102 , e . g . ,
as a feature map . The internal operation of pooling unit 140
will be described in more detail with respect to FIG . 2 .
[0031] In embodiments , matrix processor 120 outputs a set
of convolution data , e . g . , output array 122 , while accumu
lating and computing the next set of convolution data .
Similarly , pooling unit 140 generates output 106 on - the - fly
from data shifted out of matrix processor 120 , thus , covering
the cost of pooling and reducing computation time when
compared to software - based pooling methods , which require
that a convolution be stored in intermediate storage prior to
being passed through a pooling layer .
[0032] In embodiments , post - processing unit 130 receives
data , e . g . , a dot product result that corresponds to an output
channel , from the bottom row of matrix processor 120 , e . g . ,
via output flip - flops (not shown) that form a shift register .
Post - processing unit 130 may apply , e . g . , a non - linear ReLU
function to output array 122 .
[0033] It is noted that padding , e . g . , zero - padding , may be
performed at the edges of a matrix prior to a convolution
layer operation in order to obtain a predetermined output
feature map size . In embodiments , padding may be enabled
if the stride is set to a value greater than 1 . If padding is
enabled , control logic 150 may treat certain columns as
zeros , such that the divisor in an average pooling operation
is adjusted to equal the sum of the non - zero pooling values
involved in the average calculation .
[0034] FIG . 2 is an exemplary block diagram of a pooling
unit architecture according to various embodiments of the
present disclosure . Pooling unit 200 may comprise row

aligner 206 , write aligner 204 , pooling array 208 , pooler
210 . In embodiments , pooler 210 may comprise a max unit
(not shown) , averaging unit 212 , or any other unit that may
perform pooling operations to generate output 230 . In
embodiments , averaging unit 212 performs and averaging
function by using summing element 214 followed by divide
and or scale unit 216 .
100351 Input 202 may correspond to a set of feature maps .
In embodiments , input 202 constitutes an output channel
that has been produced according to the requirements of a
high - efficiency matrix processor , for example , a matrix
processor disclosed U . S . patent application Ser . No . 15 / 710 ,
433 entitled “ Accelerated Mathematical Engine , ” which
reference is incorporated herein in its entirety .
[0036] In embodiments , pooling unit 200 , in response to
receiving input 202 , reformats the data therein into the
equivalent of a grid pattern to which conventional pooling
methods may be applied , for example , to reduce the height
and width of the feature maps by a factor of two . In
embodiments , pooling unit 200 accomplishes reformatting
by arranging and storing input 202 (e . g . , in row aligner 206)
in a number of rows that have the same width as input 202 ,
such that each row comprises sections of data that corre
spond to a group of neighborhood values in a matrix to
which a pooling operation may be applied to obtain a
pooling result . In embodiments , once the rows are aligned
such that those sections that belong to the same neighbor
hood can be extracted , pooling may be easily performed ,
e . g . , by pooler 210 . In embodiments , the combination of
sections pooled in this manner represents a pooling result of
an entire pooled output channel of a convolution .
[0037] In embodiments , row aligner 206 stores input 202
in such a way that it can be accessed and read by pooler 210
as to - be - pooled data . In other words , the output channel of
the matrix processor may be reformatted to a format that can
be read easily pooled by pooler 210 while maintaining a
stream of input data 102 . In embodiments , row aligner 206
is controlled by a controller (not shown) to shift incoming
input 202 prior to writing the result into a number of pooling
arrays 208 , e . g . , 3 arrays that comprise the to - be - pooled
data .
10038] In embodiments , pooler 210 identifies suitable val
ues in row aligner 206 for use in a particular pooling
calculation and extracts from pooling arrays 208 a number
of values to compute a pooling result . The pooling result
depends on the type of pooling function used and may be an
average value , a maximum value , or an intermediate value
(e . g . , a sum) that may be converted into a suitable pooling
result . In embodiments , divide and or scale unit 216 may
follow averaging unit 212 and may be implemented as a
multiply - and - shift circuit that generates output 230 . In
embodiments , pooler 210 may access pooling array 208 to
process any subsection of pooling array 208 that comprises
a number of to - be - pooled values . For example , e . g . , pooler
210 may pool 9 values corresponding to a 3x3 pooling
window to generate an average pooling value . It is under
stood that the pooling window may assume any arbitrary
size and shape depending on parameters settings .
10039] In embodiments , input 202 is read , and reformat
ting is applied over a period of n arithmetic cycles , e . g . ,
using a method for aligning rows of data (further discussed
with respect to FIG . 4) to generate pooling results 230 in
every cycle , e . g . , one row at a time . In embodiments , once
an output channel is read , e . g . , as input 202 , the next output

US 2019 / 0205738 A1 Jul . 4 , 2019

channel may be read and reformatting may be applied , for
example , by using a different set of memory that stores the
rows of data in a different pooler 212 , until all output
channels provided by the matrix processor are processed and
the results 230 can be output . It is understood that portions
of an output channel and , in general , different output chan
nels may be processed at different times using other methods
and other circuit configurations than those depicted in FIG .
2 and accompanying text . As those skilled in the art will
appreciate , additional pooling layers may be used to output
higher level or refined feature maps .
[0040] In embodiments , pooling unit 200 computes pool
ing results as fast as matrix processor 120 to generate output
122 . Pooling unit 140 may apply a stride of , e . g . , n = 2 or n = 3 ,
to control the amount of elements the sliding window
crosses between calculations . A person of skill in the art will
appreciate that the sliding mechanism for pooling layers
operates in a similar manner as that in a convolution layer
that , for example , uses a common kernel size of 2 or 3 , with
the difference that the average or the largest value is selected
in the pooling window .
[0041] In embodiments , pooling unit 200 receives the
processed data and performs a computation on a set of arrays
that may be spatially shifted relative to each other . In
embodiments , pooling result 124 is pulled or shifted by a
state machine (not shown) into an output array , e . g . , one per
clock cycle . The state machine may perform additional
operations on pooling result 124 prior to sending data to
SRAM 102 or some other post - processing unit (not shown) .
0042] It is understood that pooling unit 200 may further
comprise components and sub - circuit circuits not shown in
FIG . 2 , such as a control unit that coordinates the sequence
of operations of any number of components coupled with
pooling unit 200 . For example , the control unit may deter
mine the number and location of data points that are
involved in a given operation without modifying the
sequence of the operation itself .
[0043] FIG . 3 is a flowchart of an illustrative process for
using a pooling system shown in FIG . 1 . Process 300 begins
step 302 when data from a convolution engine is received ,
e . g . , at a pooling unit and at every n cycles . In embodiments ,
the data is received in the form of a data array and represents
an output channel of a convolution layer in a CNN .
[0044] At step 304 , the array is converted into a set of
arrays that are aligned according to a pooling operation . In
embodiments , the pooling operation uses at least two arrays
from the set of arrays to apply a pooling operation , at step
306 , to generate pooling results , e . g . , one result per cycle .
[0045] Finally , at step 308 , the pooling result is output ,
e . g . , as one row per arithmetic cycle , into a memory device .
[0046] FIG . 4 is a flowchart of an illustrative process for
using the pooling unit architecture shown in FIG . 2 . Process
400 begins step 402 when a hardware - based pooling unit
receives from a convolution engine a set of data arrays that
each have a predefined relationship with each other .
[0047] At step 404 , using the hardware - based pooling unit ,
a pooling operation is applied to data in at least two arrays
from the set of data arrays to obtain a pooling result , e . g . , an
average or max pooling result . The pooling operation may
be applied according to a stride value . In addition , this
hardware - based pooling method takes advantage of a 1 : 1
output channel to input channel relationship that , advanta
geously eliminates the need to write a convolution result into
intermediate memory .

[0048] At step 406 , the pooling result is output , e . g . , as one
row of data points per cycle that each represent a neuron in
a layer of the CNN .
f0049] FIG . 5 is an exemplary block diagram illustrating
a process for performing pooling using the pooling unit
architecture shown in FIG . 2 . In embodiments , the matrix
processor 502 of the pooling unit architecture outputs output
channel 504 . Since a pooling operation may be treated as a
convolution with fixed weights a matrix processor could be
used to perform the pooling operation . However , since there
is typically only a single output channel in pooling , operat
ing only one output channel of multi - output channel matrix
processor at a time is a rather inefficient undertaking that
unnecessarily ties up computing resources . Therefore , to
increase computing efficiency , in embodiments , output chan
nel 504 may be written into a number of rows 506 - 510 that
are aligned , e . g . , by a row aligner as shown in FIG . 2 , such
that each row 506 - 510 is shifted against another in subse
quent cycles . In embodiments , rows Y = 0 , Y = 1 , and Y = 2 in
FIG . 5 may hold output channel 504 and may have been
written and stored in respective cycles o through 2 .
[0050] For example , in a cycle 0 , at least a first section of
input 202 is stored , e . g . , left aligned , into row Y = 0 . In the
following cycle , cycle 1 , the same section is stored into row
Y = 1 , and so on , such that it takes three reading cycles to fill
rows 506 - 510 . Once rows 506 - 510 are populated , data from
rows 506 - 510 can be combined to perform pooling calcu
lations . For example , 3 values from each of row 506 - 510
may be combined to 9 values that generate pooling value
514 as a result .
[0051] It is noted that of pooling calculations may be
performed in parallel . For example , to maintain a stream of
incoming output channels 504 , the number of pooling cal
culations may be equal to the total number of output
channels in matrix processor 502 , such that regardless of
kernel size , pooling data corresponding to the entire width
518 of matrix processor 502 may be output .
[0052] In embodiments , the shift from one row to another
corresponds to a shift of a pooling window when convolving
across a matrix to generate pooling results . In embodiments ,
the shift that is attributable to the pooling window is defined
by the number of cycles and may correspond to a stride
having a value that is defined by the same number of cycles .
In short , the stride dictates how often pooling data is output .
For example , for a stride of 2 , pooling values may be output
every other cycle , thereby , skipping a row (or column)
between outputs .
[0053] In embodiments , to create a sliding window of
three rows of storage that slide one at a time , in a third cycle
512 , the values of the first row 506 may be overwritten , such
that the cycles use the set of three rows 506 - 510 and , based
on pooling parameters , output a pooling calculation result .
[0054] It is understood that the number of rows of storage
corresponds to the size of the kernel that is supported and
that parameters such as window size , stride size , type of
pooling used , etc . , may be determined and controlled inde
pendent from the pooling process itself .
[0055] One skilled in the art will recognize no computing
system or programming language is critical to the practice of
the present invention . One skilled in the art will also
recognize that a number of the elements described above
may be physically and / or functionally separated into sub
modules or combined together .

US 2019 / 0205738 A1 Jul . 4 , 2019

[0056] It will be appreciated to those skilled in the art that
the preceding examples and embodiments are exemplary
and not limiting to the scope of the present disclosure . It is
intended that all permutations , enhancements , equivalents ,
combinations , and improvements thereto that are apparent to
those skilled in the art upon a reading of the specification
and a study of the drawings are included within the true
spirit and scope of the present disclosure . It shall also be
noted that elements of any claims may be arranged differ
ently including having multiple dependencies , configura
tions , and combinations .
What is claimed is :
1 . A pooling unit architecture comprising :
a controller ;
an aligner coupled to the controller , the aligner , in

response to receiving input data , aligns the input data
into rows to generate a pooling array and , over a
number of arithmetic cycles , shift the rows relative to
each other to reformat the input data into reformatted
data ; and

a pooler coupled to the aligner , the pooler applies , in
subsequent arithmetic cycles , a pooling operation to at
least some of the reformatted data to obtain a pooling
output that comprises a pooling value , wherein a subset
of data from each row is combined to a set of data from
which the pooling value is generated .

2 . The pooling unit according to claim 1 , wherein the
input data has been generated by a matrix processor .

3 . The pooling unit according to claim 2 , wherein , to
maintain a stream of the input data , the pooling output is
generated at a same rate as a rate at which the matrix
processor generates the input data .

4 . The pooling unit according to claim 2 , wherein the
pooler performs one or more pooling calculations in parallel ,
and wherein the number of pooling calculations equals a
number of output channels in the matrix processor , such that ,
independent of a kernel size , the pooling output corresponds
to a width of the matrix processor .

5 . The pooling unit according to claim 1 , further com
prising a multiply - and - shift circuit coupled to the pooler , the
multiply - and - shift circuit generates the pooling output based
on the pooling operation .

6 . The pooling unit according to claim 1 , wherein the
input data corresponds to a set of feature maps , and wherein
the pooler uses the reformatted input data to reduce , by a
predetermined factor , at least one of a height and a width of
the set of feature maps .

7 . The pooling unit according to claim 1 , wherein the rows
have the same width as the input data , each row comprising
sections of data that correspond to a set of neighborhood
values in a matrix .

8 . The pooling unit according to claim 1 , further com
prising a state machine that shifts the pooling output into an
output array .

9 . The pooling unit according to claim 1 , wherein the
controller determines , without modifying the sequence of
the pooling operation itself , a number and a location of data
points involved in a pooling operation .

10 . The pooling unit according to claim 1 , wherein a shift
from one row to another row corresponds to a shift of a
pooling window that convolves across a matrix at a stride
value , the shift being defined by the number of arithmetic
cycles .

11 . A method for using a hardware - based pooling system ,
the method comprising :

receiving from a convolution engine an array of data that
represents an output channel of a convolution layer in
a convolutional neural network (CNN) ;

converting the array of data into a set of arrays that are
aligned according to a pooling operation that applies
data to at least two arrays of the set of arrays to generate
a pooling result ; and

outputting the pooling result into a memory device .
12 . The method according to claim 11 , wherein the array

of data is received at a hardware - based pooling unit .
13 . The method according to claim 11 , wherein arrays of

data are received at intervals of a number of arithmetic
cycles .

14 . The method according to claim 11 , wherein pooling
results are generated at each interval .

15 . The method according to claim 14 , wherein pooling
results are output at each interval .

16 . The method according to claim 11 , wherein the array
of data corresponds to a set of feature maps .
17 . A method for using a pooling unit architecture , the

method comprising :
receiving , at a hardware - based pooling engine , a set of

data arrays that each have a predefined relationship
with each other ;

using the hardware - based pooling unit , applying , accord
ing to a stride value , a pooling operation to data in at
least two arrays from the set of data arrays to obtain a
pooling result without having to satisfy a requirement
of writing a convolution result into memory ; and

outputting the pooling result as a row of data points that
each represent a neuron in a layer of a convolutional
neural network (CNN) .

18 . The method according to claim 17 , wherein the set of
data arrays are received from a convolution engine .

19 . The method according to claim 17 , wherein obtaining
the pooling result utilizes a one - to - one relationship between
an output channel and an input channel .

20 . The method according to claim 17 , wherein pooling
result comprises one of an average pooling result and a max
pooling result .

