Commit d5160090 by Conor McCoid

Extrap: minor fixes to notes.tex

parent 40598751
 ... ... @@ -390,7 +390,7 @@ s_{n,k} - s_{n,k} = & \sum_{j=0}^m \gamma_j \left ( x_{n+j+i+1} - x_{n+j+i} \rig for the same set of $i$. This gives the following linear equation: \begin{equation*} \begin{bmatrix} 1 & \dots & 1 \\ r_n & \dots & r_{n+m} \\ \vdots & & \vdots \\ r_{n+2k-m-1} & \dots & r_{n+2k} \end{bmatrix} \begin{bmatrix} \gamma_0 \\ \vdots \\ \gamma_m \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}. \begin{bmatrix} 1 & \dots & 1 \\ r_n & \dots & r_{n+m} \\ \vdots & & \vdots \\ r_{n+2k-m-1} & \dots & r_{n+2k-1} \end{bmatrix} \begin{bmatrix} \gamma_0 \\ \vdots \\ \gamma_m \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}. \end{equation*} For this equation to be solvable one requires that $2k-m = m$, or $m=k$. The solution is then ... ...
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!