Commit 9bdab8c8 by Conor McCoid

Extrap: started equivalence of qN methods

parent f8ca51ac
 ... ... @@ -456,4 +456,19 @@ x_n & \dots & x_{n+k} \\ r_n & \dots & r_{n+k} \\ \vdots & & \vdots \\ r_{n+k-1} 1 & \dots & 1 \\ r_n & \dots & r_{n+k} \\ \vdots & & \vdots \\ r_{n+k-1} & \dots & r_{n+2k-1} }}. \section{Equivalence of many quasi-Newton methods} Suppose we have a method such that \begin{bmatrix} 1 & \dots & 1 \\ \fxi{n} & \dots & \fxi{n+k} \end{bmatrix} \vec{u} = F_{n,k} \vec{u} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \\ \hat{\vec{x}} = \begin{bmatrix} \vec{x}_n & \dots & \vec{x}_{n+k} \end{bmatrix} \vec{u} = X_{n,k} \vec{u} then one can write an equivalent method: \begin{equation*} \hat{\vec{x}} = X_{n,k} \vec{u} = \vec{x}_{n+i} - X_{n,k} (\vec{e}_i - \vec{u}) = \vec{x}_{n+i} - X_{n,k} \hat{\vec{u}} \end{equation*} where $\hat{\vec{u}}$ satisfies \begin{equation*} F_{n,k} \hat{\vec{u}} = \begin{bmatrix} 0 \\ \fxi{n+i} \end{bmatrix}. \end{equation*} \end{document} \ No newline at end of file
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!