@@ -1095,7 +1095,7 @@ for $J = \set{i_j}_{j=0}^m$ and $\Gamma = \set{\gamma_j}_{j=1}^m$.
Then $$\vec{h}(J|\Gamma)\cdot\vec{e}_\eta=\frac{\begin{vmatrix} X_J^\top\vec{e}_\eta& X_J^\top I_\Gamma\end{vmatrix}}{\begin{vmatrix}\vec{1}& X_J^\top I_\Gamma\end{vmatrix}}.$$
\begin{lemma}
Suppose $\sign(\vec{h}(J \setminus\set{i} | \Gamma)\cdot\vec{e}_\eta)\neq\sign(\vec{h}(J \setminus\set{j} | \Gamma)\cdot\vec{e}_\eta)$, then
Suppose $\sign(\vec{h}(J \setminus\set{i} | \Gamma)\cdot\vec{e}_\eta)\neq\sign(\vec{h}(J \setminus\set{j} | \Gamma)\cdot\vec{e}_\eta)$ and an intersection $\vec{h}(J \setminus\set{i,j} | \Gamma\setminus\set{\gamma})$ was calculated for some $\gamma\in\Gamma$, then
Note that since both $J \setminus\set{i}$ and $J \setminus\set{j}$ are indices of intersections their common parent $J \setminus\set{i,j}$ also indexes an intersection.
Thus all elements of the right hand side are calculated in the previous step of the algorithm.
\end{proof}
\subsection{Algorithm for the intersection of n-dimensional simplices}