Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
Conor Joseph Mccoid
UNIGE
Commits
492662b6
Commit
492662b6
authored
Jul 06, 2021
by
conmccoid
Browse files
Adding notes on Sidis proof of MPE=Arnoldi
parent
e89b60b4
Changes
1
Hide whitespace changes
Inline
Side-by-side
Research/Extrapolation methods/notes.tex
View file @
492662b6
...
...
@@ -20,6 +20,7 @@
\newcommand
{
\Set
}
[2]
{
\left
\{
#1
\ \middle
\vert
\
#2
\right
\}
}
\newcommand
{
\vmat
}
[1]
{
\begin{vmatrix}
#1
\end{vmatrix}
}
\DeclareMathOperator
{
\sign
}{
sign
}
\DeclareMathOperator
{
\Span
}{
span
}
\newcommand
{
\bbn
}{
\mathbb
{
N
}}
\newcommand
{
\bbz
}{
\mathbb
{
Z
}}
...
...
@@ -143,7 +144,7 @@ T_n = S \ \forall n \in \bbn \iff (S_n) \in \kernel.
(Somehow this already defines the kernel of the transformation; is this definition then vacuous?
It is stated in Brezinski that because of this definition any sequence transformation can be viewed as an extrapolation method.)
T
his relation may be expressed as
For some methods t
his relation may be expressed as
\begin{equation}
R(S
_
n,
\dots
, S
_{
n+q
}
, S) =0
\iff
S = T
_
n =
\sum
_{
i=0
}^
q a
_
i S
_{
n+i
}
.
\end{equation}
...
...
@@ -171,4 +172,70 @@ T_n = \frac{S_n S_{n+2} - S_{n+1}^2}{S_{n+2} - 2 S_{n+1} + S_n}.
Note that
$
dR
/
dS
=
-(
a
_
1
+
a
_
2
)
$
.
\end{example}
\section
{
E-algorithm and derivatives
}
For the E-algorithm it is assumed that the relation
$
R
$
has the form
\begin{equation}
S
_
n - S -
\sum
_{
i=1
}^
k a
_
i g
_
i(n) = 0
\end{equation}
where
$
g
_
i
(
n
)
$
are some functions that depend on the indices
$
i
$
and
$
n
$
and the elements
$
\set
{
S
_{
n
+
j
}}_{
j
=
0
}^
k
$
.
By solving the system created by repeating this equation for
$
n
$
to
$
n
+
k
$
in the same manner as the previous example one arrives at the solution
\begin{equation}
S = T
_
k
^{
(n)
}
=
\frac
{
\vmat
{
S
_
n
&
\dots
&
S
_{
n+k
}
\\
g
_
1(n)
&
\dots
&
g
_
1(n+k)
\\
\vdots
&
&
\vdots
\\
g
_
k(n)
&
\dots
&
g
_
k(n+k)
}}{
\vmat
{
1
&
\dots
&
1
\\
g
_
1(n)
&
\dots
&
g
_
1(n+k)
\\
\vdots
&
&
\vdots
\\
g
_
k(n)
&
\dots
&
g
_
k(n+k)
}}
.
\end{equation}
The kernel of this transformation is
\begin{equation}
S
_
n = S +
\sum
_{
i=1
}^
k a
_
i g
_
i(n)
\end{equation}
which may be readily obtained by rearranging the relation
$
R
$
.
\section
{
Summary of Sidi proof of MPE=Arnoldi
}
Let
$
(
x
_
n
)
$
be a sequence to be accelerated, then we produce approximations
\begin{equation}
T
_
n
^{
(k)
}
=
\sum
_{
j=0
}^
k
\gamma
_
j
^{
(n,k)
}
x
_{
n+j
}
\end{equation}
where
\begin{equation*}
\sum
_{
j=0
}^
k
\gamma
_
j
^{
(n,k)
}
= 1 .
\end{equation*}
The
$
\gamma
_
j
^{
(
n,k
)
}$
also satisfy
\begin{equation}
\sum
_{
j=0
}^
k
\langle
\Delta
x
_{
n+i
}
,
\Delta
x
_{
n+j
}
\rangle
\gamma
_
j
^{
(n,k)
}
= 0,
\quad
0
\leq
i
\leq
k-1
\end{equation}
where
$
\langle
\cdot
,
\cdot
\rangle
$
is the L2 inner product.
The
$
\Delta
$
operator has been defined previously but we reiterate it here:
\begin{equation*}
\Delta
x
_{
n+i
}
= x
_{
n+i+1
}
- x
_{
n+i
}
.
\end{equation*}
We've seen previously that
$
T
_
n
^{
(
k
)
}$
can be written as
\begin{equation*}
T
_
n
^{
(k)
}
=
\frac
{
\vmat
{
x
_
n
&
\dots
&
x
_{
n+k
}
\\
\langle
\Delta
x
_
n,
\Delta
x
_
n
\rangle
&
\dots
&
\langle
\Delta
x
_
n,
\Delta
x
_{
n+k
}
\rangle
\\
\vdots
&
&
\vdots
\\
\langle
\Delta
x
_{
n+k-1
}
,
\Delta
x
_
n
\rangle
&
\dots
&
\langle
\Delta
x
_{
n+k-1
}
,
\Delta
x
_{
n+k
}
\rangle
}}{
\vmat
{
1
&
\dots
&
1
\\
\langle
\Delta
x
_
n,
\Delta
x
_
n
\rangle
&
\dots
&
\langle
\Delta
x
_
n,
\Delta
x
_{
n+k
}
\rangle
\\
\vdots
&
&
\vdots
\\
\langle
\Delta
x
_{
n+k-1
}
,
\Delta
x
_
n
\rangle
&
\dots
&
\langle
\Delta
x
_{
n+k-1
}
,
\Delta
x
_{
n+k
}
\rangle
}}
.
\end{equation*}
The notion of the determinant is generalized here to allow for a vector result.
That is, we expand along the first row so that each
$
x
_{
n
+
i
}$
is multiplied by the determinant of a submatrix.
That means each
$
\gamma
_
j
^{
(
n,k
)
}$
is equal to
\begin{equation}
\gamma
_
j
^{
(n,k)
}
=
\frac
{
\vmat
{
\langle
\Delta
x
_
n,
\Delta
x
_
n
\rangle
&
\dots
&
\langle
\Delta
x
_
n,
\Delta
x
_{
n+j-1
}
\rangle
&
\langle
\Delta
x
_
n,
\Delta
x
_{
n+j+1
}
\rangle
&
\dots
&
\langle
\Delta
x
_
n,
\Delta
x
_{
n+k
}
\rangle
\\
\vdots
&
&
\vdots
&
\vdots
&
&
\vdots
\\
\langle
\Delta
x
_{
n+k-1
}
,
\Delta
x
_
n
\rangle
&
\dots
&
\langle
\Delta
x
_{
n+k-1
}
,
\Delta
x
_{
n+j-1
}
\rangle
&
\langle
\Delta
x
_{
n+k-1
}
,
\Delta
x
_{
n+j+1
}
\rangle
&
\dots
&
\langle
\Delta
x
_{
n+k-1
}
,
\Delta
x
_{
n+k
}
\rangle
}}{
\vmat
{
1
&
\dots
&
1
\\
\langle
\Delta
x
_
n,
\Delta
x
_
n
\rangle
&
\dots
&
\langle
\Delta
x
_
n,
\Delta
x
_{
n+k
}
\rangle
\\
\vdots
&
&
\vdots
\\
\langle
\Delta
x
_{
n+k-1
}
,
\Delta
x
_
n
\rangle
&
\dots
&
\langle
\Delta
x
_{
n+k-1
}
,
\Delta
x
_{
n+k
}
\rangle
}
}
\end{equation}
Suppose the sequence
$
(
x
_
n
)
$
is defined as
$
x
_{
n
+
1
}
=
A x
_
n
+
b
$
for some matrix
$
A
$
and vector
$
b
$
.
The residual
$
r
(
x
)
=
Ax
+
b
-
x
$
satisfies
$
r
(
x
_
i
)
=
\Delta
x
_
i
$
and
$
r
(
s
)=
0
$
where
$
s
$
is the limit of the sequence,
$
s
=
As
+
b
$
.
Moreover,
\begin{equation}
\Delta
x
_{
i+1
}
= A x
_
i + b - x
_
i = A x
_
i + b - A x
_{
i-1
}
- b = A
\Delta
x
_
i = A
^{
i+1
}
\Delta
x
_
0.
\end{equation}
Thus,
\begin{equation}
r(T
_
n
^{
(k)
}
) =
\sum
\gamma
_
i
^{
(n,k)
}
\Delta
x
_{
n+i
}
\in
\Span
\set
{
\Delta
x
_
n, A
\Delta
x
_
n,
\dots
, A
^
k
\Delta
x
_
n
}
.
\end{equation}
\end{document}
\ No newline at end of file
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment