Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
Conor Joseph Mccoid
UNIGE
Commits
27113bb0
Commit
27113bb0
authored
Nov 08, 2021
by
Conor McCoid
Browse files
Extrap: reduced width of map of methods
parent
a400f4a1
Changes
1
Hide whitespace changes
Inline
Side-by-side
Research/Extrapolation methods/notes.tex
View file @
27113bb0
...
...
@@ -610,26 +610,25 @@ If one minimizes with respect to a different norm then the methods correspond to
\begin{figure}
\centering
\begin{tikzpicture}
\matrix
(m) [column sep=
2
cm, row sep=1em]
{
\node
[align=left]
(
multisecant)
{$
\begin
{
bmatrix
}
\vec
{
1
}^
\top
\\
F
_{
n,k
}
\end
{
bmatrix
}
\vec
{
u
}
=
\begin
{
bmatrix
}
1
\\
0
\end
{
bmatrix
}$
,
\\
$
X
_{
n,k
}
\vec
{
u
}
=
\hat
{
\vec
{
x
}}$}
;
&
\node
(overdetermined
)
{$
\begin
{
bmatrix
}
\vec
{
1
}^
\top
\\
B
^
\top
F
_{
n,k
}
\end
{
bmatrix
}
\vec
{
u
}
=
\begin
{
bmatrix
}
1
\\
0
\end
{
bmatrix
}$}
;
&
\node
(
preMPE)
{
}
;
&
\node
(
Anderson)
{
Anderson mixing
}
;
\\
&
&
&
\node
(
MPE)
{
MPE
}
;
\\
\matrix
(m) [column sep=
1
cm, row sep=1em]
{
&
&
&
&
\node
[align=left]
(
Anderson)
{
Anderson
\\
mixing
}
;
\\
\node
[align=left]
(multisecant
)
{$
\begin
{
bmatrix
}
\vec
{
1
}^
\top
\\
F
_{
n,k
}
\end
{
bmatrix
}
\vec
{
u
}
=
\begin
{
bmatrix
}
1
\\
0
\end
{
bmatrix
}$
,
\\
$
X
_{
n,k
}
\vec
{
u
}
=
\hat
{
\vec
{
x
}}$
}
;
&
\node
(
overdetermined)
{$
\begin
{
bmatrix
}
\vec
{
1
}^
\top
\\
B
^
\top
F
_{
n,k
}
\end
{
bmatrix
}
\vec
{
u
}
=
\begin
{
bmatrix
}
1
\\
0
\end
{
bmatrix
}$
}
;
&
&
\node
(
preMPE)
{}
;
&
\node
(MPE)
{
MPE
}
;
\\
&
&
&
&
\node
(
GMRES)
{
GMRES
}
;
\\
\node
[align=left]
(preBroyden)
{$
\begin
{
bmatrix
}
\vec
{
1
}^
\top
&
\vec
{
1
}^
\top
\\
F
_{
n,k
}
&
B
\end
{
bmatrix
}
\vec
{
u
}
=
\begin
{
bmatrix
}
1
\\
0
\end
{
bmatrix
}$
,
\\
$
\begin
{
bmatrix
}
X
_{
n,k
}
&
C
\end
{
bmatrix
}
\vec
{
u
}
=
\hat
{
\vec
{
x
}}$}
;
&
&
&
\node
(GM
RE
S
)
{
GM
RE
S
}
;
\\
&
\node
(prepreRRE)
{}
;
&
\node
(preRRE)
{}
;
&
\node
(RRE)
{
RRE
}
;
\\
&
&
&
\node
(GCR)
{
GCR
}
;
\\
&
\node
(pre
preMMPE
)
{}
;
&
\node
(pre
MMPE
)
{}
;
&
\node
(
MMPE)
{
MMPE
}
;
\\
&
\node
(prepreRRE)
{}
;
&
&
\node
(preRRE)
{}
;
&
\node
(R
RE)
{
R
RE
}
;
\\
&
&
&
&
\node
(GCR)
{
GCR
}
;
\\
&
\node
(prepreMMPE)
{}
;
&
&
\node
(preMMPE)
{}
;
&
\node
(MMPE)
{
MMPE
}
;
\\
&
\node
(pre
TEA
)
{}
;
&
&
\node
(pre
BiCG
)
{}
;
&
\node
(
BiCG)
{
BiCG
}
;
\\
\node
(Broyden)
{
Generalized Broyden
}
;
&
\node
(preTEA)
{}
;
&
\node
(preBiCG)
{}
;
&
\node
(BiCG)
{
BiCG
}
;
\\
&
&
&
\node
(TEA)
{
TEA
}
;
\\
&
&
&
&
\node
(TEA)
{
TEA*
}
;
\\
}
;
\path
[->,very thick]
(multisecant) edge node[above]
{$
k
\neq
d
$}
(overdetermined) edge node[right]
{$
k < d
$}
(preBroyden)
(preBroyden) edge node[right,align=left]
{$
(
C
\Delta
)
^
\top
(
X
_{
n,k
}
\Delta
)
=
0
$
,
\\
$
B
=
\hat
{
J
}_{
n
-
1
,k
}
C
$}
(Broyden)
(overdetermined) edge node[above]
{$
B
=
F
_{
n,k
-
1
}$}
(preMPE)
(preMPE) edge
node[above]
{
+ relaxation
}
(Anderson
)
(preMPE) edge
[red] (MPE
)
(prepreRRE) edge node[above]
{$
B
=
F
_{
n,k
}
\Delta
$}
(preRRE)
(preRRE) edge[red] (RRE)
(prepreMMPE) edge node[above]
{$
B
=
\begin
{
bmatrix
}
\vec
{
q
}_
1
&
\dots
&
\vec
{
q
}_
k
\end
{
bmatrix
}$}
(preMMPE)
...
...
@@ -638,12 +637,13 @@ If one minimizes with respect to a different norm then the methods correspond to
(preBiCG) edge[blue] (BiCG)
(BiCG) edge[red] (TEA);
\draw
[-, very thick]
(overdetermined) edge (preTEA);
\draw
[->,very thick,red]
(preMPE) |- (MPE);
\draw
[->,very thick,blue]
(preMPE) |- (GMRES);
\draw
[->,very thick,blue]
(preRRE) |- (GCR);
\draw
[->,very thick]
(preMPE) |- node[above]
{
+relaxation
}
(Anderson);
\end{tikzpicture}
\caption
{
Interconnectivity of extrapolation, acceleration and quasi-Newton methods.
Red arrows indicated
$
\fxi
{
n
}
=
\vec
{
x
}_{
n
+
1
}
-
\vec
{
x
}_
n
$
while blue arrows indicate
$
\fxi
{
n
}
=
(
A
-
I
)
\vec
{
x
}_
n
+
\vec
{
b
}$
and
$
\fxi
{
n
+
1
}
=
A
\fxi
{
n
}$
.
}
Red arrows indicated
$
\fxi
{
n
}
=
\vec
{
x
}_{
n
+
1
}
-
\vec
{
x
}_
n
$
while blue arrows indicate
$
\fxi
{
n
}
=
(
A
-
I
)
\vec
{
x
}_
n
+
\vec
{
b
}$
and
$
\fxi
{
n
+
1
}
=
A
\fxi
{
n
}$
.
Note that TEA* is the linear version of the method; general TEA derives directly from the multisecant equations.
}
\end{figure}
\end{document}
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment