Conor McCoid
Publications
Peer-reviewed
- Improved Resolution of Boundary Layers for Spectral Collocation,
with Manfred Trummer, SIAM J. Sci. Comput. 41-5 (2019)
- We propose a new algorithm to improve the accuracy of spectral methods for singularly
perturbed two-point boundary value problems. Driscoll and Hale [J. Numer. Anal., 36 (2016),
pp. 108--132] suggest resampling as an alternative to row replacement when including boundary
conditions. Testing this with an iterated sine-transformation
[T. Tang and M. R. Trummer [SIAM J. Sci. Comput., 17 (1996), pp. 430--438] designed for
boundary layers reveals artificial boundary conditions imposed by the transformation.
The transformation is regularized to prevent this. The new regularized sine-transformation
is employed to solve boundary value problems with and without resampling. It shows superior
accuracy provided the regularization parameter is chosen from an optimal range.
- Preconditioning of spectral methods via Birkhoff interpolation,
with Manfred Trummer, Numerical Algorithms, 79(2), 555-573 (2018)
- High-order differentiation matrices as calculated in spectral collocation methods
usually include a large round-off error and have a large condition number
(Baltensperger and Berrut Computers and Mathematics with Applications 37(1), 41– 48 1999;
Baltensperger and Trummer SIAM J. Sci. Comput. 24(5), 1465–1487 2003; Costa and Don Appl.
Numer. Math. 33(1), 151–159 2000). Wang et al. (Wang et al. SIAM J. Sci. Comput. 36(3),
A907–A929 2014) present a method to precondition these matrices using Birkhoff interpolation.
We generalize this method for all orders and boundary conditions and allowing arbitrary
rows of the system matrix to be replaced by the boundary conditions.
The preconditioner is an exact inverse of the highest-order differentiation matrix
in the equation; thus, its product with that matrix can be replaced by the identity matrix.
We show the benefits of the method for high-order differential equations.
These include improved condition number and, more importantly, higher accuracy of solutions
compared to other methods.
Submitted for review
- A provably robust algorithm for triangle-triangle intersections in floating point arithmetic,
with Martin J. Gander, preprint (2020)
- Motivated by the unexpected failure of the triangle intersection component of the
Projection Algorithm for Nonmatching Grids (PANG), this article provides a robust version
with proof of backward stability. The new triangle intersection algorithm ensures consistency
across three types of vertex calculations. The proof of stability draws an exhaustive list
of graphs representing the intersections and codifies possible errors as graph rewrites.
These rewrites are shown to either map between the listed graphs or be impermissible by the
algorithm. The article concludes with a comparison between the old and new intersection
algorithms for PANG using an example found to reliably generate failures in the former.
Other
- Spectral Differentiation: Integration and Inversion,
masters thesis, Simon Fraser University (2018)
- Pseudospectral differentiation matrices suffer from large round-off error, and give
rise to illconditioned systems used to solve differential equations numerically. This
thesis presents two
types of matrices designed to precondition these systems and improve robustness towards
this round-off error for spectral methods on Chebyshev-Gauss-Lobatto points. The first
of these is a generalization of a pseudospectral integration matrix described by Wang et
al. [18]. The second uses this integration matrix to construct the matrix representing the
inverse operator of the differential equation. Comparison is made between expected and
calculated eigenvalues. Both preconditioners are tested on several examples. In many cases,
accuracy is improved over the standard methodology by several orders of magnitude. Using
these matrices on general sets of points is briefly discussed.
Address
Office 605
Rue du Lièvre 2-4
1211 Genève
Switzerland
Contact
conor.mccoid@unige.ch
+41 22 379 11 60